[1] |
王晨, 马卫华, 罗世辉, 等. 机车车辆踏面损伤机理研究[J]. 振动、测试与诊断, 2016, 36 (5): 890-896.
|
|
WANG Chen, MA Weihua, LUO Shihui, et al. Study on damage mechanism of locomotive and rolling stock tread[J]. Journal of Vibration, Measurement & Diagnosis, 2016, 36 (5): 890-896.
|
[2] |
CAO Yuan, MA Lianchuan, ZHANG Yuzhuo. Application of fuzzy predictive control technology in automatic train operation[J]. Cluster Computing, 2019, 22(6): 14 135-14 144.
doi: 10.1007/s10586-018-2826-3
|
[3] |
张帆, 步兵, 赵骏逸. 列车运行控制系统信息安全风险评估方法[J]. 中国安全科学学报, 2020, 30(增1): 172-178.
|
|
ZHANG Fan, BU Bing, ZHAO Junyi. Risk assessment method for information safety of train operation control system[J]. China Safety Science Journal, 2020, 30(S1): 172-178.
doi: 10.16265/j.cnki.issn1003-3033.2020.S1.030
|
[4] |
HE Jing, YANG Buchong, ZHANG Changfan, et al. Robust consensus braking algorithm for distributed EMUs with uncertainties[J]. IET Control Theory & Applications, 2019, 13(17):2766-2774.
doi: 10.1049/iet-cta.2018.6107
|
[5] |
WEN Tao, DONG Deyi, CHEN Qianyu, et al. Maximal information coefficient-based two-stage feature selection method for railway condition monitoring[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(7):2681-2690.
doi: 10.1109/TITS.2018.2881284
|
[6] |
HE Di, XU Ke, ZHOU Peng, et al. Surface defect classification of steels with a new semi-supervised learning method[J]. Optics and Lasers in Engineering, 2019, 117:40-48.
doi: 10.1016/j.optlaseng.2019.01.011
|
[7] |
GAO Yiping, GAO Liang, LI Xinyu, et al. A semi-supervised convolutional neural network-based method for steel surface defect recognition[J]. Robotics and Computer Integrated Manufacturing, 2020, 61:101825.1-101825.8.
|
[8] |
FU Guizhong, SUN Peize, ZHU Wenbin, et al. A deep-learning-based approach for fast and robust steel surface defects classification[J]. Optics and Lasers in Engineering, 2019, 121:397-405.
doi: 10.1016/j.optlaseng.2019.05.005
|
[9] |
KIM M S, PARK T, PARK P G. Classification of steel surface defect using convolutional neural network with few images[C]. 2019 12th Asian Control Conference (ASCC). IEEE, 2019: 1398-1401.
|
[10] |
SONG Guorong, SONG Kechen, YAN Yunhui. EDRNet: encoder-decoder residual network for salient object detection of strip steel surface defects[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(12):9709-9719.
doi: 10.1109/TIM.2020.3002277
|
[11] |
温廷新, 王贵通, 孔祥博, 等. 基于迁移学习与残差网络的矿工不安全行为识别[J]. 中国安全科学学报, 2020, 30(3): 41-46.
doi: 10.16265/j.cnki.issn1003-3033.2020.03.007
|
|
WEN Tingxin, WANG Guitong, KONG Xiangbo, et al. Identification of miners' unsafe behaviors based on transfer learning and residual network[J]. China Safety Science Journal, 2020, 30(3): 41-46.
doi: 10.16265/j.cnki.issn1003-3033.2020.03.007
|
[12] |
HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2020, 42(8): 2011-2023.
|
[13] |
ZHANG Hu, ZU Keke, LU Jian, et al. EPSANet: an efficient pyramid split attention block on convolutional neural network[J]. Computer Vision and Pattern Recognition, 2021: DOI: 10.48550/arXiv.2105.14447.
doi: 10.48550/arXiv.2105.14447
|
[14] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
[15] |
SHASHIDHAR R, SUDARSHAN P. Visual speech recognition for small scale dataset using VGG16 convolution neural network[J]. Multimedia Tools and Applications, 2021: DOI: 10.1007/s11042-021-11119-0.
doi: 10.1007/s11042-021-11119-0
|
[16] |
MARK S, ANDREW H, ZHU Menglong, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2018: DOI: 10.1109/CVPR.2018.00474.
doi: 10.1109/CVPR.2018.00474
|