中国安全科学学报 ›› 2024, Vol. 34 ›› Issue (3): 237-246.doi: 10.16265/j.cnki.issn1003-3033.2024.03.1985

• 职业卫生 • 上一篇    下一篇

面向煤矿井下作业场景的安全帽佩戴识别算法

左明成(), 焦文华**()   

  1. 中国矿业大学 人工智能研究院,江苏 徐州 221008
  • 收稿日期:2023-09-09 修回日期:2023-12-22 出版日期:2024-03-28
  • 通讯作者:
    ** 焦文华(1975—),男,山东济宁人,博士,研究员,主要从事机器视觉及其矿山应用研究。E-mail:
  • 作者简介:

    左明成 (1992—),男,山东烟台人,博士,助理研究员,主要从事深度学习及其矿山应用研究。E-mail:

  • 基金资助:
    国家自然科学基金(62303465); 山东省自然科学基金(ZR2022LZH017); 企事业单位委托项目(JAI2301)

Helmet-wearing recognition algorithm for coal mine underground operation scenarios

ZUO Mingcheng(), JIAO Wenhua**()   

  1. Institute of Artificial Intelligence, China University of Mining & Technology, Xuzhou Jiangsu 221008, China
  • Received:2023-09-09 Revised:2023-12-22 Published:2024-03-28

摘要:

为提高煤矿井下作业场景的工人安全帽佩戴识别准确度,提出一种人体姿态分析的安全帽佩戴识别算法和机器视觉系统优化方法。首先,选择单步多框目标检测(SSD)作为多目标识别的基础模型,利用网络压缩模型(SqueezeNet)削减改进模型参数,以形成高效的识别模型,在提高对工人安全帽的识别准确度的同时,维持识别准确度与计算速度之间的平衡;然后,引入多人姿态估计算法,定位每个工人的人体关节点,判断工人的复杂行为状态;最后,基于多目标识别与多人姿态估计的融合模型,提取目标人员的上肢关节点,结合其与安全帽包围框的空间拓扑结构关系,判定安全帽的佩戴情况,选取3 000条图像数据验证所提方法的有效性。结果表明:机器视觉系统优化方法能优化硬、软件配置,提高系统性能。该方法识别准确度达到91.1%,明显优于最新的安全帽佩戴识别算法,能够满足煤矿井下作业的工人安全帽佩戴识别准确度要求。

关键词: 煤矿井下, 安全帽佩戴, 识别算法, 姿态分析, 模型优化

Abstract:

To improve the accuracy of miners' helmet-wearing recognition in coal mine underground operations, a helmet-wearing recognition algorithm was proposed based on human posture analysis and machine vision system optimization methods. First, Single Shot MultiBox Detector (SSD) was used as the basic model of multi-target identification. The squeezed neural network (SqueezeNet) was used to reduce the model parameters to develop an efficient recognition model, which improved the recognition accuracy of the miners' helmet and maintained the balance between the recognition accuracy and the calculation speed. Then, a multi-person posture estimation algorithm was used to locate the joint points of each miner and determine the miners' complex behavioral status. Finally, the upper limb nodes of the target were extracted based on fusion model of multi-target recognition and multi-person posture estimation, and then the helmet-wearing condition was determined by the spatial topological relationship between the upper limb nodes and the helmet frame. Moreover, 3 000 pieces of image data were selected to validate the proposed method's performance. The results indicated that the machine vision system can optimize the hardware and software configuration to improve the system's performance. Furthermore, the identification accuracy reached up to 91.1%, which was much better than that of the latest helmet-wearing recognition algorithm. Therefore, the proposed system in this study can meet the requirements of helmet-wearing recognition accuracy for underground coal miners.

Key words: coal mine underground, helmet-wearing, recognition algorithm, posture analysis, model optimization

中图分类号: