[1] |
李志川, 胡鹏, 马佳星, 等. 中国海上风电发展现状分析及展望[J]. 中国海上油气, 2022, 34(5):229-236.
|
|
LI Zhichuan, HU Peng, MA Jiaxing, et al. Analysis and prospect of offshore wind power development in China[J]. China Offshore Oil and Gas, 2022, 34(5):229-236.
|
[2] |
TAVNER P J, XIANG J, SPINATO F. Reliability analysis for wind turbines[J]. Wind Energy, 2007, 10(1):1-18.
|
[3] |
YANG Wenxian, PENG Zhike, WEI Kexiang, et al. Structural health monitoring of composite wind turbine blades: challenges, issues and potential solutions[J]. IET Renewable Power Generation, 2017, 11(4): 411-416.
|
[4] |
DU Ying, ZHOU Shengxi, JING Xingjian, et al. Damage detection techniques for wind turbine blades: a review[J]. Mechanical Systems and Signal Processing, 2020,141:DOI: 10.1016/j.ymssp.2019.106445.
|
[5] |
HU Wenbo, WANG Weidong, AI Chengbo, et al. Machine vision-based surface crack analysis for transportation infrastructure[J]. Automation in Construction, 2021,132:DOI: 10.1016/j.autcon.2021.103973.
|
[6] |
陈法法, 成孟腾, 杨蕴鹏, 等. 融合双注意力机制和U-Net网络的锈蚀图像分割[J]. 西安交通大学学报, 2021, 55(12):119-128.
|
|
CHEN Fafa, CHENG Mengteng, YANG Yunpeng, et al. A segmentation method based on dual attention mechanism and U-Net for corrosion images[J]. Journal of Xi'an Jiaotong University, 2021, 55(12):119-128.
|
[7] |
XU Donghua, WEN Chuanbo, LIU Jihui. Wind turbine blade surface inspection based on deep learning and UAV-taken images[J]. Renewable Sustainable Energy, 2019, 11(5):DOI: 10.1063/1.5113532.
|
[8] |
SARKAR D, GUNTURI S K. Wind turbine blade structural state evaluation by hybrid object detector relying on deep learning models[J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 12(8): 8535-8548.
|
[9] |
MAO Yulin, WANG Shuanxin, YU Dingli, et al. Automatic image detection of multi-type sur face defects on wind turbine blades based on cascade deep learning network[J]. Intelligent Data Analysis, 2021, 25(2):463-482.
|
[10] |
SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4): 640-651.
|
[11] |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]. International Conference on Medical Image Computing and Computer Assisted Intervention, 2015:234-241.
|
[12] |
BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495.
doi: 10.1109/TPAMI.2016.2644615
pmid: 28060704
|
[13] |
CHEN Liangchieh, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 40(4):834-848.
|
[14] |
CUI Xiaoning, WANG Qicai, DAI Jinpeng, et al. Intelligent crack detection based on attention mechanism in convolution neural network[J]. Advances in Structural Engineering, 2021, 24(9): 1859-1868.
|
[15] |
HACEFENDIOLU K, BASAGA H B, YAVUZ Z, et al. Intelligent ice detection on wind turbine blades using semantic segmentation and class activation map approaches based on deep learning method[J]. Renewable Energy, 2022, 182:1-16.
|
[16] |
夏正洪, 魏汝祥, 李彦冬. 改进YOLOv3算法下通航机场场面运动目标检测[J]. 中国安全科学学报, 2023, 33(2):82-88.
doi: 10.16265/j.cnki.issn1003-3033.2023.02.0149
|
|
XIA Zhenghong, WEI Ruxiang, LI Yandong. Moving target detection of general aviation airport based on improved YOLOv3 algorithm[J]. China Safety Science Journal, 2023, 33(2):82-88.
doi: 10.16265/j.cnki.issn1003-3033.2023.02.0149
|
[17] |
何静, 侯娜, 张昌凡, 等. 基于金字塔拆分注意力的列车轮对踏面损伤诊断[J]. 中国安全科学学报, 2022, 32(5):35-40.
doi: 10.16265/j.cnki.issn1003-3033.2022.05.2166
|
|
HE Jing, HOU Na, ZHANG Changfan, et al. Diagnosis of train wheelset tread damage based on EPSA-ResNet[J]. China Safety Science Journal, 2022, 32(5):35-40.
doi: 10.16265/j.cnki.issn1003-3033.2022.05.2166
|
[18] |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
|
[19] |
张欢, 仇大伟, 冯毅博, 等. U-Net模型改进及其在医学图像分割上的研究综述[J]. 激光与光电子学进展, 2022, 59(2):1-17.
|
|
ZHANG Huan, QIU Dawei, FENG Yibo, et al. Improved U-Net models and its applications in medical image segmentation: a review[J]. Laser & Optoelectronics Progress, 2022, 59(2):1-17.
|