[1] |
张萌, 刘宏磊, 乔文光, 等. 排土场稳定性影响因素显著性研究[J]. 中国安全科学学报, 2021, 31(2):69-75.
doi: 10.16265/j.cnki.issn 1003-3033.2021.02.010
|
|
ZHANG Meng, LIU Honglei, QIAO Wenguang, et al. Signifiacnt research on influencing factors of dump stability[J]. China Safety Science Journal, 2021, 31(2): 69-75.
doi: 10.16265/j.cnki.issn 1003-3033.2021.02.010
|
[2] |
LIU Xin, WANG Yu. Bayesian selection of slope hydraulic model and identification of model parameters using monitoring data and subset simulation[J]. Computers and Geotechnics, 2021, 139: DOI: 10.1016/j.compgeo.2021.104428.
|
[3] |
ZHANG Chengye, LI Feiyu, LI Jun, et al. Assessing the effect, attribution, and potential of vegetation restoration in open-pit coal mines' dumping sites during 2003-2020 utilizing remote sensing[J]. Ecological Indicators, 2023, 155: DOI: 10.1016/j.econlind.2023.111003.
|
[4] |
张凯, 张科. 基于LightGBM算法的边坡稳定性预测研究[J]. 中国安全科学学报, 2022, 32(7): 113-120.
doi: 10.16265/j.cnki.issn1003-3033.2022.07.1473
|
|
ZHANG Kai, ZHANG Ke. Prediction study on slope stability based on LightGBM algorithm[J]. China Safety Science Journal, 2022, 32(7): 113-120.
doi: 10.16265/j.cnki.issn1003-3033.2022.07.1473
|
[5] |
CHAULYA S K, SINGH R S, CHAKRABORTY M K, et al. Quantification of stability improvement of a dump through biological reclamation[J]. Geotechnical and Geological Engineering. 2000, 18: 193-207.
|
[6] |
张豪, 罗亦泳. 基于人工免疫算法的边坡稳定性预测模型[J]. 煤炭学报, 2012, 37(6): 911-917.
|
|
ZHANG Hao, LUO Yiyong. Prediction model for slope stability based on artificial immune algorithm[J]. Journal of China Coal Society, 2012, 37(6): 911-917.
|
[7] |
陶志刚, 李华鑫, 曹辉, 等. 降雨条件下全段高排土场边坡稳定性实验研究[J]. 煤炭学报, 2020, 45(11): 3 793-3 805.
|
|
TAO Zhigang, LI Huaxin, CAO Hui, et al. Test on the slope stability of full-section high dump under rainfall[J]. Journal of China Coal Society, 2020, 45(11): 3 793-3 805.
|
[8] |
蔡跃, 三谷泰浩, 江琦哲郎. 反倾层状岩体边坡稳定性的数值分析[J]. 岩石力学与工程学报, 2008, 27(12): 2 517-2 522.
|
|
CAI Yue, MITANI Y, ESAKI T. Numerical analysis of stabilty for an antidip stratified rock slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(12): 2 517-2 522.
|
[9] |
杨杰, 马春辉, 程琳, 等. 高陡边坡变形及其对坝体安全稳定影响研究进展[J]. 岩土力学, 2019, 40(6): 2 341-2 353,2 368.
|
|
YANG Jie, MA Chunhui, CHENG Lin, et al. Research advances in the deformation of high-steep slopes and its influence on dam safety[J]. Rock and Soil Mechanics, 2019, 40(6): 2 341-2 353, 2 368.
|
[10] |
王振伟, 郝哲, 王来贵, 等. 基于极限平衡与突变理论的边坡综合评价方法[J]. 煤矿安全, 2009, 40(8): 103-105.
|
[11] |
XU Mingyang, ZHOU Yang, PANG Rui, et al. Seismic collaborative reliability evaluation of slopes using subset simulation via support vector machine[J]. Soil Dynamics and Earthquake Engineering, 2023, 165: DOI: 10.1016/j.soildyn.2022.107673.
|
[12] |
KARDANI N, ZHOU Annan, NAZEM M, et al. Improved prediction of slope stability using a hybrid stacking ensemble method based on finite element analysis and field data[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(1): 188-201.
|
[13] |
CHANG Zhilu, CATANI F, HUANG Faming, et al. Landslide susceptibility prediction using slope unit-based machine learning models considering the heterogeneity of conditioning factors[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(5): 1 127-1 143.
|
[14] |
GAO Wei, GE Shangshang. A comprehensive review of slope stability analysis based on artificial intelligence methods[J]. Expert Systems with Applications, 2024, 239:DOI: 10.1016/j.eswa.2023.122400.
|
[15] |
KHAJEHZADEH M, KEAWSAWASVONG S. Predicting slope safety using an optimized machine learning model[J]. Heliyon, 2023, 9(12):DOI: 10.1016/j.heliyon.2023.e23012.
|
[16] |
ZHANG Sheng, DING Li, XIE Menglong, et al. Reliability analysis of slope stability by neural network (NN), principal component analysis (PCA), and transfer learning (TL) techniques[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 16(10): DOI: 10.1016/j.jrmge.2023.06.023.
|
[17] |
何泊延. 基于GBDT的数据分类方法的研究及其应用[D]. 吉林: 东北电力大学, 2021.
|
|
HE Boyan. Research and application of data classification method based on GBDT[D]. Jilin: Northeast Electric Power University, 2021.
|
[18] |
张西良, 焦灏恺, 李二宝. 基于迁移学习算法的深部爆破振动速度预测[J]. 中国安全科学学报, 2023, 33(6): 64-72.
doi: 10.16265/j.cnki.issn1003-3033.2023.06.0337
|
|
ZHANG Xiliang, JIAO Haokai, LI Erbao. Prediction of vibration velocity of deep blasting based on transfer learning algorithm[J]. China Safety Science Journal, 2023, 33(6): 64-72.
doi: 10.16265/j.cnki.issn1003-3033.2023.06.0337
|
[19] |
秦雅琴, 李秋谷, 赵鹏燕, 等. 基于多分类Adaboost算法的驾驶人风险感知倾向研究[J]. 中国安全科学学报, 2022, 32(4):141-147.
doi: 10.16265/j.cnki.issn1003-3033.2022.04.021
|
|
QIN Yaqin, LI Qiugu, ZHAO Pengyan, et al. Research on risk perception tendency of drivers based on multi-class Adaboost algorithm[J]. China Safety Science Journal, 2022, 32(4): 141-147.
doi: 10.16265/j.cnki.issn1003-3033.2022.04.021
|
[20] |
戴文渊. 基于实例和特征的迁移学习算法研究[D]. 上海: 上海交通大学, 2009.
|
|
DAI Wenyuan. Instance-based and feature-based transfer learning[D]. Shanghai: Shanghai Jiaotong University, 2009.
|
[21] |
罗亦泳, 姚宜斌, 张立亭, 等. 基于HIOA-MK-TCRVM算法的边坡稳定性估计模型[J]. 中国安全科学学报, 2017, 27(1):116-121.
doi: 10.16265/j.cnki.issn1003-3033.2017.01.021
|
|
LUO Yiyong, YAO Yibin, ZHANG Liting, et al. Slope stability estimation model based on HIOA-MK-TCRVM[J]. China Safety Science Journal, 2017, 27(1): 116-121.
doi: 10.16265/j.cnki.issn1003-3033.2017.01.021
|
[22] |
徐晓滨, 施凡, 冯静, 等. 基于AdaBoost的地下采掘工程高韧性安全评估方法[J]. 中国安全科学学报, 2023, 33(增1):112-118.
|
|
XU Xiaobin, SHI Fan, FENG Jing, et al. High-resilience safety assessment method of underground coal mining using AdaBoost[J]. China Safety Science Journal, 2023, 33(S1): 112-118.
doi: 10.16265/j.cnki.issn1003-3033.2023.S1.1304
|
[23] |
张梦涵, 魏进, 卞海丁. 基于机器学习的边坡稳定性分析方法:以国内618个边坡为例[J]. 地球科学与环境学报, 2022, 44(6):1 083-1 095.
|
|
ZHANG Menghan, WEI Jin, BIAN Haiding. Slope stability analysis method based on machine learning: taking 618 slopes in China as examples[J]. Journal of Earth Sciences and Environment, 2022, 44(6): 1 083-1 095.
|
[24] |
GB51016—2014, 非煤露天矿边坡工程技术规范[S].
|
|
GB51016-2014, Technical code for non-coal open-pit mine slope engineering[S].
|