中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (2): 66-72.doi: 10.16265/j.cnki.issn1003-3033.2025.02.0880

• 安全工程技术 • 上一篇    下一篇

基于改进YOLOv8n的飞机铆钉及脱落异常检测算法

夏正洪1(), 何琥1, 杨磊1, 吴建军2, 刘璐3   

  1. 1 中国民用航空飞行学院 空中交通管理学院,四川 广汉 618307
    2 中国民用航空华北地区管理局,北京 100621
    3 中国航空工业集团有限公司 成都飞机设计研究所,四川 成都 610091
  • 收稿日期:2024-09-25 修回日期:2024-11-25 出版日期:2025-02-28
  • 作者简介:

    夏正洪 (1985—),男,四川乐山人,硕士,教授,主要从事基于深度学习的航空运行安全风险评价研究。E-mail:

    刘璐 高级工程师

  • 基金资助:
    国家重点研发计划(2024YFC3014400); 民航飞行技术与飞行安全科研基地(F2024KF04C); 四川省重点研发计划项目(2024YFTX0078); 中国民用航空飞行学院基本科研项目(24CAFUC03047)

Aircraft rivet and detachment anomaly detection algorithm based on improved YOLOv8n

XIA Zhenghong1(), HE Hu1, YANG Lei1, WU Jianjun2, LIU Lu3   

  1. 1 School of Air Traffic Management, Civil Aviation Flight University of China, Guanghan Sichuan 618307, China
    2 North Regional Administration, Civil Aviation Administration of China, Beijing 100621, China
    3 Chengdu Aircraft Design and Research Institute, Aviation Industry Corporation of China, Ltd., Chengdu Sichuan 610091, China
  • Received:2024-09-25 Revised:2024-11-25 Published:2025-02-28

摘要:

为解决飞机铆钉小目标检测时易出现漏检的问题,提出一种基于改进YOLOv8n的飞机铆钉及脱落异常检测算法。首先,通过添加小目标检测层,更好地融合骨干网络中的浅层细节信息,提高算法的特征融合能力以及对铆钉小目标的识别与定位性能;其次,将骨干网络中的前2次卷积替换为空间深度转换卷积(SPD-Conv),通过特征图的重组与非跨步卷积的组合,减少算法在下采样过程中的信息丢失;然后,将大型可分离核注意力(LSKA)融入快速空间金字塔池化(SPPF)模块中,通过计算每个特征图上的空间权重和通道权重,捕捉空间与通道之间的依赖关系,并调整特征图,增强算法对铆钉特征信息的提取和识别能力;最后,基于自建的飞机铆钉数据集进行消融试验和对比试验。结果表明:所提算法能实时检测飞机铆钉及脱落异常,较YOLOv8n算法检测结果在精确率、召回率、平均精度均值(mAP)分别提升6.5%、16%、15%,较其他主流算法的检测性能均有较大提升。

关键词: 改进YOLOv8n, 飞机铆钉, 脱落, 异常检测, 空间深度转换卷积(SPD-Conv), 消融试验

Abstract:

In order to address the issue of missed detections during small target detection of aircraft rivets, an improved YOLOv8n algorithm for the detection of aircraft rivets and their anomalies was proposed. First, by adding a small object detection head, the shallow detail information in the backbone network was better fused, enhancing the model's feature fusion capability and its ability to recognize and locate small rivet targets. Second, the first two convolutions in the backbone network were replaced with SPD-Conv, which reduces information loss during down sampling through the combination of feature map reorganization and non-stride convolutions. Finally, large separable kernel attention (LSKA) was integrated into the spatial pyramid pooling fast (SPPF) module, capturing the dependencies between spatial and channel dimensions by calculating spatial and channel weights on each feature map and adjusting the feature maps to enhance the algorithm's ability to extract and recognize rivet feature information. Ablation experiments and comparative experiments were conducted based on a self-built aircraft rivet dataset. The results show that the proposed algorithm can achieve real-time identification of aircraft rivets and their anomalies, with precision, recall, and mean average precision (mAP) values improved by 6.5%, 16%, and 15%, respectively, compared to the YOLOv8n algorithm. The detection performance is also significantly better than other mainstream algorithms.

Key words: improved YOLOv8n, aircraft rivets, detachment, anomaly detection, space to depth convolution(SPD-Conv), ablation experiment

中图分类号: