中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (5): 64-72.doi: 10.16265/j.cnki.issn1003-3033.2025.05.1493

• 安全工程技术 • 上一篇    下一篇

气爆破岩振动信号优化分解与相关特征分析

付晓强1,2,3(), 戴良玉2, 俞缙3, 邵艺强4   

  1. 1 三明学院 建筑工程学院,福建 三明 365004
    2 三明科飞产气新材料股份有限公司,福建 三明 365500
    3 华侨大学 福建省隧道与城市地下空间工程技术研究中心,福建 厦门 361021
    4 福州大学 土木工程学院, 福建 福州 350108
  • 收稿日期:2024-12-11 修回日期:2025-02-18 出版日期:2025-05-28
  • 作者简介:

    付晓强 (1984—),男,山西运城人,博士,教授,主要从事工程爆破与岩石破碎方面的研究。E-mail:

    付晓强, 教授

    戴良玉, 高级工程师

    俞缙, 教授师

  • 基金资助:
    福建省自然科学基金联合资助(2024J01905)

Optimization decomposition and related feature analysis of rock vibration signals in gas blasting

FU Xiaoqiang1,2,3(), DAI Liangyu2, YU Jin3, SHAO Yiqiang4   

  1. 1 College of Architecture and Civil Engineering,Sanming University, Sanming Fujian 365004, China
    2 Sanming Coffer Fine Chemical Industrial Co., Ltd., Sanming Fujian 365500,China
    3 Fujian Research Center for Tunneling and Urban Underground Space Engineering, Huaqiao University, Xiamen Fujian 361021, China
    4 College of Civil Engineering,Fuzhou University, Fuzhou Fujian 350108,China
  • Received:2024-12-11 Revised:2025-02-18 Published:2025-05-28

摘要: 为解决变分模态分解过程中模态数和二次惩罚因子难以确定的问题,提出灰狼优化-变分模态分解(GWO-VMD)算法。以龙龙隧道气爆法施工为依托,采用集成化采集模块采集气爆破岩过程中振动信号,利用相空间重构递归图(RP)相似度模型准确判别信号GWO-VMD主分量;重构得到去除干扰项的真实信号,揭示气爆信号能量在时频域的分布特征,并量化数码电子雷管精度误差。结果表明:与传统的变分模态算法相比,GWO-VMD算法在气爆破岩信号信噪比提升和自适应相关特征提取方面具有显著优势,具有很强的时变频率追踪性能,能够准确识别数码雷管起爆精度,有效识别隧道爆破雷管灾害源特征。

关键词: 气爆破岩, 振动信号, 优化分解, 相关特征, 递归图, 灰狼优化-变分模态分解(GWO-VMD)

Abstract:

In order to solve the problem of difficulty in determining the number of modes and quadratic penalty factors in the process of variational mode decomposition, a GWO-VMD algorithm was proposed. Based on the Longlong Tunnel gas explosion method construction, an integrated acquisition module was used to collect vibration signals during the rock-breaking process. The phase space reconstruction recursive graph (RP) similarity model was used to accurately distinguish the GWO-VMD principal components of the signals. The real signal with interference removed was reconstructed, revealing the distribution characteristics of the energy of the gas explosion signal in the time-frequency domain, and qua.pngying the accuracy error of the digital electronic detonator. The results show that compared with traditional variational mode algorithms, the GWO-VMD algorithm has significant advantages in improving the signal-to-noise ratio and adaptive feature extraction of gas explosion signals, and has strong time-varying frequency tracking performance. It can accurately ide.pngy the detonation accuracy of digital detonators and effectively ide.pngy the related of tunnel-blasting detonator disaster sources.

Key words: gas rock breaking, vibration signal, optimize decomposition, related features, recurrence plot, grey wolf optimizer-variational mode decomposition(GWO-VMD)

中图分类号: