中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (S1): 107-113.doi: 10.16265/j.cnki.issn1003-3033.2025.S1.0017

• 安全工程技术 • 上一篇    下一篇

InSAR监测数据的地表沉陷深度学习预测模型研究

李刚1,2(), 支梦辉3,**(), 李斌4, 杨帆3, 彭志伟5, 李东亮5   

  1. 1 山西晋煤集团技术研究院有限责任公司, 山西 晋城 048000
    2 山西省地球物理勘探创新技术中心,山西 晋城 048000
    3 辽宁工程技术大学 测绘与地理科学学院, 辽宁 阜新 123000
    4 晋能控股集团晋圣松峪煤业有限公司, 山西 晋城 048200
    5 晋能控股集团 赵庄煤业有限责任公司, 山西 晋城 048000
  • 收稿日期:2025-02-12 修回日期:2025-05-10 出版日期:2025-09-03
  • 通信作者:
    ** 支梦辉(1997—),男,河南周口人,硕士研究生,主要研究方向为遥感数据处理与InSAR监测等。E-mail:
  • 作者简介:

    李刚 (1985—),男,黑龙江肇东人,本科,高级工程师,主要从事地测防治水和地球物理勘探技术应用方面的工作。E-mail:

    杨帆, 教授

    彭志伟, 工程师

    李东亮, 工程师

  • 基金资助:
    国家自然科学基金资助(50604009); 辽宁省教育厅科学技术研究项目(LJ2020JCL006); 自然资源部国土卫星遥感应用重点实验室资助项目(LSMNR-202107)

Study on deep learning prediction model of surface subsidence depth based on InSAR monitoring data

LI Gang1,2(), ZHI Menghui3,**(), LI Bin4, YANG Fan3, PENG Zhiwei5, LI Dongliang5   

  1. 1 Shanxi Jincheng Group Technology Research Institute Co., Ltd., Jincheng Shanxi 048000, China
    2 Shanxi Province Technical Innovation Center for Mine Geophysical Exploration, Jincheng Shanxi 048000, China
    3 School of Geomatics, Liaoning Technical University, Fuxin Liaoning 123000, China
    4 Jinsheng Songyu Coal Industry Co., Ltd., Jinneng Holding Group, Jincheng Shanxi 048200, China
    5 Zhaozhuang Coal Industry Co., Ltd., Jinneng Holding Group, Jincheng Shanxi 048000, China
  • Received:2025-02-12 Revised:2025-05-10 Published:2025-09-03

摘要: 为研究地下采矿引发的地面沉降预测问题,以山西省晋城市阳城县为背景开展地表沉降监测与预测方法研究。首先,获取2018年1月至2020年12月期间的Sentinel-1 SAR影像(81景),结合数字高程模型(DEM)、大气校正在线服务(GACOS)及精密轨道数据,采用小基线集干涉合成孔径雷达(SBAS-InSAR)技术精细化监测区域地表形变情况,揭示其时序演化与空间分布特征(最大沉降速率达27.84 mm/a);然后,构建基于变分模态分解(VMD)与反向传播(BP)神经网络相结合的混合预测模型(VMD-BP);最后,将该模型预测性能与传统长短期记忆网络(LSTM)模型及变分模态分解与长短期记忆网络(VMD-LSTM)模型进行对比分析。结果表明:VMD-BP模型显著提升了预测精度,在测试点位(点位a)的均方根误差(RMSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)分别低至0.278 01 mm、0.234 29 mm和0.39%,远优于LSTM及VMD-LSTM模型。

关键词: 地面沉降, 形变预测, 小基线集干涉合成孔径雷达(SBAS-InSAR)技术, 长短期记忆网络(LSTM)模型, 变分模态分解-长短期记忆网络(VMD-BP)模型

Abstract:

In order to study the problem of surface subsidence caused by underground mining, a study on the methods of surface subsidence monitoring and prediction was carried out in Yangcheng County, Jincheng City, Shanxi Province. Firstly, Sentinel-1 SAR images (81 views) from January 2018 to December 2020 were acquired, combined with digital elevation model (DEM), generic atmospheric correction online service (GACOS), and precision orbit data, and SBAS-InSAR technique was used to monitor the regional surface deformation in a refined way, revealing its temporal evolution and spatial distribution characteristics (the maximum subsidence rate reached -27.84 mm/a). Then, a hybrid prediction model (VMD-BP) based on the combination of variational modal decomposition (VMD) and back propagation (BP) neural network was constructed; finally, the prediction performance of this model was compared with that of the traditional LSTM model and VMD-LSTM model. The results show that the VMD-BP model significantly improves the prediction accuracy, and the root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) at the test point (point a) are as low as 0.278 01 mm, 0.234 29 mm, and 0.39%, respectively, which are much better than the LSTM and the VMD-LSTM models.

Key words: surface subsidence, deformation prediction, small baseline subset interferometric synthetic aperture radar (SBAS-InSAR) technique, long short-term memory (LSTM) model, variational mode decomposition-back propagation (VMD-BP) model

中图分类号: