中国安全科学学报 ›› 2024, Vol. 34 ›› Issue (5): 195-203.doi: 10.16265/j.cnki.issn1003-3033.2024.05.1570

• 安全工程技术 • 上一篇    下一篇

面向危险化学品事故的事理图谱构建

李红儒1(), 栾婷婷1,**(), 邓明月1, 陈文涛2, 张雪1   

  1. 1 北京石油化工学院 安全工程学院,北京 102617
    2 应急管理部 信息研究院,北京 100029
  • 收稿日期:2023-11-14 修回日期:2024-02-21 出版日期:2024-05-28
  • 通讯作者:
    **栾婷婷(1982—),女,山东高密人,工学博士,副教授,主要从事风险评估、应急技术与管理等方面的研究。E-mail:
  • 作者简介:

    李红儒 (1996—),女,河北唐山人,硕士研究生,主要研究方向为安全风险评估与应急管理技术。E-mail:

    栾婷婷 副教授

    陈文涛 副研究员

Development of causal graph for hazardous chemical accidents

LI Hongru1(), LUAN Tingting1,**(), DENG Mingyue1, CHEN Wentao2, ZHANG Xue1   

  1. 1 School of Safety Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
    2 Information Research Institute, Emergency Management Department, Beijing 100029, China
  • Received:2023-11-14 Revised:2024-02-21 Published:2024-05-28

摘要:

为提高危险化学品企业安全管理水平,构建危险化学品事故因果关系事理图谱。首先,依据事故调查报告,提出一种基于改进CasRel的实体关系联合抽取模型,该模型通过关系感知双向编码器表征法(R-Bert)和Span指针网络提高文本信息的抽取准确性;其次,利用相似度计算方法进行事件泛化,使得图谱更加完整和准确,并将其存储在图数据库Neo4j中,以可视化的方式直观展示事件之间的关联;最后,基于构建的事理图谱,设计出与之匹配的问答系统架构,开发危险化学品事故因果关系智能问答系统。研究结果表明:改进的CasRel模型计算结果F1值为90.5%,较未改进模型准确率提升约2%。构建的危险化学品事故事理图谱及智能问答系统,在多个评价指标表现良好,能够清晰揭示事件之间的逻辑关系;所提方法可满足危险化学品事故知识问答需求,协助探究事故发生的规律和潜在风险因素,推断事故发展趋势。

关键词: 危险化学品事故, 事理图谱, 知识抽取, 因果关系, 智能问答系统

Abstract:

The causality causal graph of hazardous chemical accidents was developed to improve the safety management level of hazardous chemical enterprises. Firstly, based on the accident investigation report, an entity-relationship joint extraction model was proposed through an improved CasRel technique. Furthermore, the proposed model aimed to improve the extraction accuracy of textual information by incorporating the relationship-aware bidirectional encoder representation method (R-Bert) and Span pointer network. Subsequently, similarity calculation methods were used to generalize the events to enhance the graph's comprehensiveness and accuracy. Then, the refined data was stored in the Neo4j graph database visualizing the associations between events. Finally, the corresponding guestion-answering system was proposed based on the developed causal graph, and then an intelligent question-answering system for the causality of hazardous chemical accidents was proposed. The results indicated that the F1 value calculated by the improved CasRel model was 90.5%, and the prediction accuracy of the proposed model was 2% higher than that simulated by the original model. The hazardous chemical accidents causal graph and intelligent question-answering system performed well in terms of multiple evaluation indexes, clearly revealing the logical relationship between events. Therefore, the proposed model in this study can meet question-answering needs of hazardous chemical accidents, facilitating the exploration of accident patterns and potential risk factors, and enabling accident trend prediction.

Key words: hazardous chemical accidents, casual graph, knowledge extraction, causality, intelligent question-answering system

中图分类号: