[1] |
中国铁路成都局集团有限公司. 高速铁路行车组织细则[M]. 北京: 中国铁道出版社, 2018:73-75.
|
[2] |
田起利. 列车调度员的疲劳研究[D]. 成都: 西南交通大学, 2011.
|
|
TIAN Qili. Study on fatigue of train controller[D]. Chengdu: Southwest Jiaotong University, 2011.
|
[3] |
王列妮, 牟瑞芳, 张磊. 我国某铁路局2005—2014年行车事故分布规律分析[J]. 安全与环境学报, 2018, 18(1):406-412.
|
|
WANG Lieni, MU Ruifang, ZHANG Lei. Analysis of the distribution law of traffic accidents in a railway bureau in my country from 2005 to 2014[J]. Journal of Safety and Environment, 2018, 18(1):406-412.
|
[4] |
HOCKEY G R. The psychology of fatigue: work, effort and control[M]. Cambridge: Cambridge University Press, 2013:123-126.
|
[5] |
杨奎. 铁路列车调度员疲劳机理与发展规律研究[D]. 成都: 西南交通大学, 2017.
|
|
YANG Kui. Mechanism and developing law of railway dispatcher's fatigue[D]. Chengdu: Southwest Jiaotong University, 2017.
|
[6] |
LAL S, CRAIG A. A critical review of the psychophysiology of driver fatigue[J]. Biological Psychology, 2001, 55(3):173-194.
doi: 10.1016/s0301-0511(00)00085-5
pmid: 11240213
|
[7] |
JAP B T, LAL S, FISCHER P, et al. Using EEG spectral components to assess algorithms for detecting fatigue[J]. Expert Systems with Applications, 2009, 36:2352-2359.
|
[8] |
WANG Qingjun, LI Yibo, LIU Xueping. Analysis of feature fatigue EEG signals based on wavelet entropy[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2018, 32(8):DOI: 10.1142/S021800141854023X.
|
[9] |
张光远, 胡晋, 文原劲, 等. 高速铁路调度员疲劳程度分级及预测方法研究[J]. 铁道学报, 2021, 43(5):18-26.
|
|
ZHANG Guangyuan, HU Jin, WEN Yuanjin, et al. Research on the classification and prediction method of fatigue degree of high-speed railway dispatchers[J]. Journal of the China Railway Society, 2021, 43(5):18-26.
|
[10] |
TREJO L J, KNUTH K, PRADO R, et al. EEG-Based estimation of mental fatigue: convergent evidence for a three-state model[J]. Foundations of Augmented Cognition, Proceedings, 2007, 4565:201-211.
|
[11] |
CHUA B L, DAI Z, THAKOR N, et al. Connectome pattern alterations with increment of mental fatigue in one-hour driving simulation[C]. 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2017:4355-4358.
|
[12] |
张朋, 周前祥, 于洪强, 等. 基于EEG信号特征的脑力疲劳快速检测方法研究[J]. 北京航空航天大学学报, 2023, 49(1):145-154.
|
|
ZHANG Peng, ZHOU Qianxiang, YU Hongqiang, et al. Fast detection method of mental fatigue based on EEG signal characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(1):145-154.
|
[13] |
郭孜政, 牛琳博, 吴志敏, 等. 基于EEG的驾驶疲劳识别算法及其有效性验证[J]. 北京工业大学学报, 2017, 43(6):929-934.
|
|
GUO Zizheng, NIU Linbo, WU Zhimin, et al. Driver's fatigue recognition algorithm based on EEG and its validity verification[J]. Journal of Beijing University of Technology, 2017, 43(6):929-934.
|
[14] |
GRANDJEAN E. Fatigue in industry[J]. British Journal of Industrial Medicine, 1979, 36(3):175-186.
doi: 10.1136/oem.36.3.175
pmid: 40999
|
[15] |
郭孜政, 谭永刚, 马国忠, 等. 基于BP神经网络的驾驶精神疲劳识别方法[J]. 哈尔滨工业大学学报, 2014, 46(8):118-121.
|
|
GUO Zizheng, TAN Yonggang, MA Guozhong, et al. Recognition method of driving mental fatigue based on BP neural network[J]. Journal of Harbin Institude of Technology, 2014, 46(8):118-121.
|
[16] |
KAIDA K, TAKAHASHI M, AKERSTEDT T, et al. Validation of the Karolinska sleepiness scale against performance and EEG variables[J]. Clinical Neurophysiology, 2006, 117(7):1574-1581.
doi: 10.1016/j.clinph.2006.03.011
pmid: 16679057
|
[17] |
JAP B T, LAL S, FISCHER P, et al. Using EEG spectral components to assess algorithms for detecting fatigue[J]. Expert Systems with Applications An International Journal, 2009, 36(2):2352-2359.
|
[18] |
SEN B, PEKER M, CAVUSOGLU A, et al. A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms[J]. Journal of Medical Systems, 2014, 38(3):DOI: 10.1007/s10916-014-0018-0.
|
[19] |
程佳. 基于脑电信号的睡眠分期研究[D]. 北京: 北京理工大学, 2015.
|
|
CHENG Jia. Research of sleep staging based on EEG signals[D]. Beijing: Beijing Institute of Technology, 2015.
|
[20] |
封常生. 小波分析在信号处理中的应用[D]. 上海: 上海交通大学, 2007.
|
|
FENG Changsheng. Application of wavelet analysis on signal processing[D]. Shanghai: Shanghai Jiaotong University, 2007.
|
[21] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. IEEE Conference on Computer Vision & Pattern Recognition. IEEE Computer Society, 2016:770-778.
|
[22] |
BOUGUEZZI S, FAIEDH H, SOUANI C. Slim MobileNet: an enhanced deep convolutional neural network[C]. 18th International Multi-Conference on Systems, Signals & Devices (SSD). IEEE, 2021:12-16.
|
[23] |
苏畅. 基于RFID的预制装配式住宅构件追踪管理研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
|
|
SU Chang. RFID-Based tracking management system of prefabricated housing components[D]. Harbin: Harbin Institute of Technology, 2012.
|
[24] |
STERN J M. Atlas of EEG patterns[M]. Baltimore MD: Lippincott Williams & Wilkins, 2005:377-379.
|
[25] |
胥川, 王雪松, 陈小鸿. 无侵入测量指标的驾驶疲劳检测性能评估[J]. 西南交通大学学报, 2014, 49(4):720-726.
|
|
XU Chuan, WANG Xuesong, CHEN Xiaohong. Evaluating performance of non-intrusive indicators on drowsy driving detection[J]. Journal of Southwest Jiaotong University, 2014, 49(4):720-726.
|
[26] |
黄诗童, 张威强, 张朋柱. 基于HRV分析的可穿戴心电仪精神疲劳检测[J]. 计算机应用研究, 2019, 36(7):2093-2097, 2103.
|
|
HUANG Shitong, ZHANG Weiqiang, ZHANG Pengzhu. Wearable ECG for mental fatigue detection based on HRV analysis[J]. Computer Application Research, 2019, 36(7):2093-2097, 2103.
|
[27] |
张蕾. 管制员工作负荷评估系统及扇区容量问题研究[D]. 南京: 南京航空航天大学, 2006.
|
|
ZHANG Lei. The research on the evaluation system of controller's workload and sector capacity[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006.
|
[28] |
张明岛, 陈兴时. 脑诱发电位学:第2版[M]. 上海: 上海科技教育出版社, 2000:387-390.
|
[29] |
TING P, HWANG J, DOONG J, et al. Driver fatigue and highway driving: a simulator study[J]. Physiology & Behavior, 2008, 94(3):448-453.
|
[30] |
RULI E, VENTURA L. Accurate likelihood inference for the volume under the ROC surface[J]. Cancer Reports, 2020, 3(4): DOI: 10.1002/cnr2.1206.
|