中国安全科学学报 ›› 2024, Vol. 34 ›› Issue (12): 140-148.doi: 10.16265/j.cnki.issn1003-3033.2024.12.1917

• 安全工程技术 • 上一篇    下一篇

基于LLE-DBSCAN-SMOTE数据处理的隧洞岩爆预测

范成强(), 夏元友**(), 张宏伟, 黄建   

  1. 武汉理工大学 土木工程与建筑学院,湖北 武汉 430070
  • 收稿日期:2024-07-14 修回日期:2024-09-19 出版日期:2024-12-28
  • 通信作者:
    **夏元友(1965—),男,安徽庐江人,博士,教授,主要从事岩土工程安全分析等方面的研究。E-mail:
  • 作者简介:

    范成强 (1997—),男,安徽合肥人,硕士研究生,主要研究方向为岩爆预测。E-mail:

  • 基金资助:
    国家自然科学基金资助(42077228)

Tunnel rockburst prediction based on LLE-DBSCAN-SMOTE data processing

FAN Chengqiang(), XIA Yuanyou**(), ZHANG Hongwei, HUANG Jian   

  1. School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan Hubei 430070, China
  • Received:2024-07-14 Revised:2024-09-19 Published:2024-12-28

摘要:

为解决岩爆预测中预测指标关联以及原始数据存在离群点与数据不平衡等问题,提出基于局部线性嵌入(LLE)-基于密度的带噪声应用空间聚类(DBSCAN)-合成少数类过采样(SMOTE)数据处理的岩爆预测方法。首先,选取围岩最大切向应力 σ θ、岩石单轴抗压强度 σ c 岩石单轴抗拉强度 σ t、弹性应变能指数 W e t、脆性系数 σ c / σ t、应力系数 σ θ / σ c和表征围岩应力梯度的应力集度值 β构建岩爆预测指标体系;其次,采用LLE算法进行数据降维处理以消除指标间的交叉关联影响,引入DBSCAN算法去除数据离群点;然后,引入SMOTE技术进行数据平衡化;最后,分别采用决策树(DT)、随机森林(RF)与梯度提升树(GBDT)算法构建3类岩爆预测模型,对比分析数据处理前后数据训练模型的预测精度,并通过江边水电站引水隧洞实测岩爆数据进行工程验证。结果表明:预测指标由原始数据的7维降至4维,以及采用分级离群值处理后的3类算法模型的预测准确率皆为同类模型中最高,江边水电站工程岩爆预测验证了数据处理后的模型预测准确率明显高于基于原始岩爆数据建立的同类模型。

关键词: 局部线性嵌入(LLE), 基于密度的带噪声应用空间聚类(DBSCAN), 合成少数类过采样(SMOTE), 数据处理, 岩爆预测

Abstract:

To address issues of correlation prediction indicators, outliers, and data imbalance in original data in rockburst prediction, a rockburst prediction method based on LLE-DBSCAN-SMOTE for data processing was proposed. Firstly, the maximum tangential stress of surrounding rock σ θ, uniaxial compressive strength of rock σ c, uniaxial tensile strength of rock σ t, elastic strain energy index W e t, brittle coefficient σ c / σ t, stress coefficient σ θ / σ c, and stress concentration value β characterizing the stress gradient of surrounding rock were selected to construct a rockburst prediction indicator system. Secondly, the LLE algorithm was used for data dimensionality reduction to eliminate the cross-correlation effect between indicators, and the DBSCAN algorithm was introduced to remove outliers. Then, the SMOTE technology was introduced for data balancing. Finally, three types of rockburst prediction models were proposed using Decision Tree (DT), Random Forest (RF), and Gradient Boosting Decision Tree (GBDT) algorithms. The prediction accuracy of the data training models before and after processing was compared and analyzed. Moreover, engineering verification was performed through the measurement in the diversion tunnel of Jiangbian Hydropower Station. The results show that the prediction accuracy of the three types of algorithm models which reduce the prediction index from the 7 dimensions of the original data to the 4 dimensions and adopt the graded outlier processing is the highest among the similar models. The rockburst prediction of the Jiangbian Hydropower Station demonstrates that the proposed model significantly improves prediction accuracy compared to similar models using original rockburst data.

Key words: local linear embedding (LLE), density-based spatial clustering of applications with noise (DBSCAN), synthetic minority over-sampling technique (SMOTE), data processing, rockburst prediction

中图分类号: