[1] |
冯夏庭, 肖亚勋, 丰光亮. 岩爆孕育过程研究[J]. 岩石力学与工程学报, 2019, 38(4): 650-673.
|
|
FENG Xiating, XIAO Yaxun, FENG Guangliang. Study on the development process of rockbursts[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (4): 650-673.
|
[2] |
江飞飞, 周辉, 刘畅, 等. 地下金属矿山岩爆研究进展及预测与防治[J]. 岩石力学与工程学报, 2019, 38(5): 956-972.
|
|
JIANG Feifei, ZHOU Hui, LIU Chang, et al. Research progress, prediction and prevention of rock bursts in underground metal mines[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (5): 956-972.
|
[3] |
ZHANG Junfei, WANG Yuhang, SUN Yuantian, et al. Strength of ensemble learning in multiclass classification of rockburst intensity[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(13): 1833-1853.
doi: 10.1002/nag.3111
|
[4] |
CHEN Guangyao, WANG Mingwu, YAN Jiahui, et al. A connection cloud model coupled with improved conflict evidence fusion method for prediction of rockburst intensity[J]. IEEE Access, 2021,9: 113 535-113 549.
|
[5] |
WOJTECKI A, IWASZENKO S, APEL D B, et al. An attempt to use machine learning algorithms to estimate the rockburst hazard in underground excavations of hard coal mine[J]. Energies, 2021, 14(21): 6920-6928.
|
[6] |
谭文侃, 胡南燕, 叶义成, 等. 基于四大集成学习的岩爆烈度分级预测[J]. 岩石力学与工程学报, 2022, 41(增2): 3250-3259.
|
|
TAN Wenkan, HU Nanyan, YE Yicheng, et al. Rockburst intensity classification prediction based on four ensemble learning[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41 (S2): 3250-3259.
|
[7] |
夏元友, 张宏伟, 吝曼卿, 等. 基于数据预处理技术并考虑围岩应力梯度影响的隧洞岩爆预测[J]. 岩土工程学报, 2023, 45(10): 1 987-1 994.
|
|
XIA Yuanyou, ZHANG Hongwei, LIN Manqing, et al. Prediction of tunnel rockbursts based on data preprocessing technology considering influences of stress gradient of surrounding rock[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 1 987-1 994.
|
[8] |
YIN Xin, LIU Quansheng, PAN Yucong, et al. Strength of stacking technique of ensemble learning in rockburst prediction with imbalanced data: comparison of eight single and ensemble models[J]. Natural Resources Research, 2021, 30(2): 1795-1815.
doi: 10.1007/s11053-020-09787-0
|
[9] |
GONG Fengqiang, WANG Yunliang, LUO Song. Rockburst proneness criteria for rock materials: review and new insights[J]. Journal of Central South University, 2020, 27(10): 2793-2821.
|
[10] |
满轲, 武立文, 刘晓丽, 等. 基于灰色关联分析和SSA-RF模型的岩爆等级预测[J]. 金属矿山, 2023, 34(5): 202-212.
|
|
MAN Ke, WU Liwen, LIU Xiaoli, et al. Rockburst grade prediction based on grey correlation analysis and SSA-RF model[J]. Metal Mines, 2023, 34(5): 202-212.
|
[11] |
GUO Deping, CHEN Hemao, TANG Libin, et al. Assessment of rockburst risk using multivariate adaptive regression splines and deep forest model[J]. Acta Geotechnica, 2022, 17(4): 1183-1205.
|
[12] |
李明亮, 李克钢, 秦庆词, 等. 岩爆烈度等级预测的机器学习算法模型探讨及选择[J]. 岩石力学与工程学报, 2021, 40(增1): 2806-2816.
|
|
LI Mingliang, LI Kegang, QIN Qingci, et al. Discussion and selection of machine learning algorithm model for rockburst intensity grade prediction[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40 (S1): 2806-2816.
|
[13] |
侯克鹏, 孙华芬, 包广拓. 改进的MVO-GRNN神经网络岩爆预测模型研究[J]. 安全与环境学报, 2023, 41(3):1-12.
|
|
HOU Kepeng, SUN Huafen, BAO Guangtuo. Research on improved MVO-GRNN neural network rockburst prediction model[J]. Journal of Safety and Environment, 2023, 41(3):1-12.
|
[14] |
谢学斌, 李德玄, 孔令燕, 等. 基于CRITIC-XGB算法的岩爆倾向等级预测模型[J]. 岩石力学与工程学报, 2020, 39(10): 1975-1982.
|
|
XIE Xuebin, LI Dexuan, KONG Lingyan, et al. Rockburst propensity prediction model based on CRITIC-XGB algorithm[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39 (10): 1975-1982.
|
[15] |
陈则黄, 李克钢, 李明亮, 等. 基于PCA-SOFM模型的岩爆烈度等级预测[J]. 地下空间与工程学报, 2022, 18(增2): 934-942.
|
|
CHEN Zehuang, LI Kegang, LI Mingliang, et al. Prediction of rock burst intensity level based on PCA-SOFM model[J]. Chinese Journal of Underground Space and Engineering, 2022, 18 (S2): 934-942.
|
[16] |
杨小彬, 裴艳宇, 程虹铭, 等. 基于SOFM神经网络模型的岩爆烈度等级预测方法[J]. 岩石力学与工程学报, 2021, 40(增1): 2708-2715.
|
|
YANG Xiaobin, PEI Yanyu, CHENG Hongming, et al. Prediction method of rockburst intensity grade based on SOFM neural network model[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40 (S1): 2708-2715.
|
[17] |
张传庆, 卢景景, 陈珺, 等. 岩爆倾向性指标及其相互关系探讨[J]. 岩土力学, 2017, 38(5): 1397-1404.
|
|
ZHANG Chuanqing, LU Jingjing, CHEN Jun, et al. Discussion on rock burst proneness indexes and their relation[J]. Rock and Soil Mechanics, 2017, 38 (5): 1397-1404.
|
[18] |
夏元友, 刘昌昊, 刘夕奇, 等. 均布与梯度应力加载路径下岩爆破坏特征试验[J]. 中国安全科学学报, 2020, 30(5): 149-155.
doi: 10.16265/j.cnki.issn1003-3033.2020.05.023
|
|
XIA Yuanyou, LIU Changhao, LIU Xiqi, et al. Experimental study on rockburst characteristics under uniform and gradient stress loading paths[J]. China Safety Science Journal, 2020, 30 (5): 149-155.
doi: 10.16265/j.cnki.issn1003-3033.2020.05.023
|
[19] |
宋英华, 庞昭胜, 李墨潇, 等. 基于反赋权与MBCT-SR多维云模型算法岩爆预测研究[J]. 中国安全生产科学技术, 2022, 18(3): 40-46.
|
|
SONG Yinghua, PANG Zhaosheng, LI Moxiao, et al. Research on rock burst prediction based on anti weighting and MBCT-SR multidimensional cloud model algorithm[J]. Journal of Safety Science and Technology, 2022, 18 (3): 40-46.
|
[20] |
黄建, 夏元友, 吝曼卿. 基于改进组合赋权的岩爆多维云模型预测研究[J]. 中国安全科学学报, 2019, 29(7): 26-32.
doi: 10.16265/j.cnki.issn1003-3033.2019.07.005
|
|
HUANG Jian, XIA Yuanyou, LIN Manqing. Study on prediction of rock burst by multi-dimensional cloud model based on improved combined weight[J]. China Safety Science Journal, 2019, 29 (7): 26-32.
doi: 10.16265/j.cnki.issn1003-3033.2019.07.005
|
[21] |
胡建华, 黄鹏莅, 周坦, 等. 岩爆倾向性的改进有限云评价模型与工程应用[J]. 中国安全科学学报, 2022, 32(2): 90-98.
doi: 10.16265/j.cnki.issn1003-3033.2022.02.013
|
|
HU Jianhua, HUANG Pengli, ZHOU Tan, et al. Improved finite cloud evaluation model for rock burst tendency and its engineering application[J]. China Safety Science Journal, 2022, 32 (2): 90-98.
doi: 10.16265/j.cnki.issn1003-3033.2022.02.013
|
[22] |
白明洲, 王连俊, 许兆义. 岩爆危险性预测的神经网络模型及应用研究[J]. 中国安全科学学报, 2002, 12(4):65-69.
|
|
BAI Mingzhou, WANG Lianjun, XU Zhaoyi. Neural network model and application research for predicting rock burst risk[J]. China Safety Science Journal, 2002, 12 (4): 65-69.
|
[23] |
何佳其, 吝曼卿, 刘夕奇, 等. 引入梯度应力的岩爆预测方法[J]. 岩土工程学报, 2020, 42(11):2098-2105.
|
|
HE Jiaqi, LIN Manqing, LIU Xiqi, et al. New method for introducing gradient stress into rock-burst prediction[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11):2098-2105.
|
[24] |
ZHANG Hongwei, XIA Yuanyou, LIN Manqin, et al. A three-step rockburst prediction model based on data preprocessing combined with clustering and classification algorithms[J]. Bulletin of Engineering Geology and the Environment, 2024, 83:1-19.
|
[25] |
王艳芳. 基于微震监测数据的岩爆智能预警方法研究[D]. 沈阳: 东北大学, 2019.
|
|
WANG Yanfang. Research on intelligent early warning method for rock burst based on microseismic monitoring data[D]. Shenyang: Northeastern University, 2019.
|