中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (3): 179-186.doi: 10.16265/j.cnki.issn1003-3033.2025.03.0075

• 公共安全 • 上一篇    下一篇

中国大陆核心城市韧性发展预测及动态空间分异研究

许慧1(), 叶泽鸿1, 周启琳2, 张日芬3   

  1. 1 重庆邮电大学 经济管理学院,重庆 400065
    2 重庆市重大项目服务中心,重庆 401121
    3 柳州工学院 土木建筑工程学院,广西 柳州 545616
  • 收稿日期:2024-10-14 修回日期:2024-12-17 出版日期:2025-03-28
  • 作者简介:

    许 慧 (1988—),女,河南商丘人,博士,教授,主要从事工程项目智能风险管理、韧性城市建设方面的研究。E-mail:

  • 基金资助:
    重庆市社会科学规划中特理论项目(2024ZTZD14); 重庆市教委科学技术研究计划项目重点项目(KJZD-K202400603); 重庆市教育委员会人文社科研究项目(23SKGH463)

Resilient prediction and dynamic spatial differentiation of core Chinese mainland cities

XU Hui1(), YE Zehong1, ZHOU Qilin2, ZHANG Rifen3   

  1. 1 School of Economics and Management, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
    2 Chongqing Major Projects Service Center, Chongqing 401121, China
    3 School of Civil Engineering and Architecture, Liuzhou Institute of Technology, Liuzhou Guangxi 545616, China
  • Received:2024-10-14 Revised:2024-12-17 Published:2025-03-28

摘要:

为提高城市治理水平及促进可持续发展,基于2011—2020年中国大陆25个核心城市(直辖市、省会城市与自治区首府)的面板数据,通过理想解逼近(TOPSIS)-熵权法分析中国大陆核心城市的韧性测度,并通过反向传播(BP)神经网络模型预测2026与2029年这些核心城市的韧性情况,从而对区域板块韧性的动态空间分异情况开展研究。结果表明:各城市韧性指数标准差在0.180上下波动,城市间的韧性离散程度相对稳定,但存在一些城市韧性指数呈逐年下降趋势;城市韧性预测指数的标准差在2026年降至0.173,城市间的韧性离散程度降低,城市韧性差距缩小。在2014、2020、2026和2029年4个时间截面中,城市韧性空间异质格局演变相对稳定,城市韧性水平排位如下:东部地区>中部地区>西部地区>东北地区,其中,东部地区的经济及基础设施韧性最高,中部地区的社会及生态韧性最高。

关键词: 核心城市, 城市韧性预测, 空间分异格局, 反向传播(BP)神经网络模型, 自然间断点法

Abstract:

In order to improve urban governance and promote sustainable development, the resilience measurement of core cities in Chinese mainland was analyzed based on panel data from 25 core cities (municipalities directly under the central government, provincial capitals, and regional capitals) between 2011 and 2020. Technique for order preference by similarity to an ideal solution(TOPSIS)-Entropy Weight Method was applied. The resilience situation for 2026 and 2029 was predicted using a BP neural network model. This research aimed to explore the dynamic spatial differentiation of regional resilience. The results show that the standard deviation of the resilience index across cities fluctuates around 0.180, with the resilience disparity between cities remaining relatively stable. However, some cities show a downward trend in their resilience index year by year. The standard deviation of the predicted resilience index for 2026 decreases to 0.173, indicating a reduction in the resilience disparity between cities and a narrowing of the resilience gap. In the four time points of 2014, 2020, 2026, and 2029, the spatial heterogeneity of urban resilience evolves relatively stably. The urban resilience rankings are as follows: Eastern region > Central region > Western region > Northeastern region. Among them, the economic and infrastructure resilience in the Eastern region is the highest, while the social and ecological resilience in the Central region is the highest.

Key words: core cities, prediction of urban resilience, spatial heterogeneous pattern, back propagation(BP)neural network, natural intermittent point method

中图分类号: