中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (3): 253-260.doi: 10.16265/j.cnki.issn1003-3033.2025.03.0531

• 职业卫生 • 上一篇    下一篇

消防服多层织物热质耦合传递模型建立与验证

杨杰(), 卢盈汝, 雷颖**()   

  1. 西安科技大学 安全科学与工程学院,陕西 西安 710054
  • 收稿日期:2024-10-14 修回日期:2024-12-24 出版日期:2025-03-28
  • 通信作者:
    ** 雷颖(1997—),女,陕西渭南人,博士研究生,主要研究方向为职业健康。E-mail:
  • 作者简介:

    杨 杰 (1987—),男,山西大同人,博士,教授,主要从事个体防护方面的研究。E-mail:

  • 基金资助:
    国家自然科学基金面上项目资助(52474248); “十四五”国家重点研发子课题(2022YFC300610502)

Development and validation of a coupled multi-layered heat and mass transfer model of firefighting protective clothing

YANG Jie(), LU Yingru, LEI Ying**()   

  1. College of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an Shaanxi 710054, China
  • Received:2024-10-14 Revised:2024-12-24 Published:2025-03-28

摘要:

为提升火场高温热辐射环境中人体热损伤评估精度,保障救援人员生命安全,建立适用于动态条件的皮肤-微环境-消防服系统热质耦合传递模型;基于多孔介质热湿传递机制,考虑人体活动引起的织物周期运动及其对消防服热湿传递过程的影响,实时预测不同热辐射强度下干态和湿态的皮肤温度、烧伤时间、织物层温湿度分布等。结果表明:模型预测皮肤温度模拟值与文献试验测量值的相对误差仅为3.79%。8.5 kW/m2热辐射暴露工况下,干态条件下发生二度皮肤烧伤的时间比湿态条件下提前33.7 s;消防员以1 m/s的速度靠近20 kW/m2辐射热源时,增加隔热层厚度能更有效地阻挡热量传递,人体发生二度皮肤烧伤的时间延长10.9 s,且皮肤表面吸收的总热能降低20%;当微环境厚度与织物的周期运动振幅相同,导致高温织物周期性地直接接触皮肤表面时,皮肤温度快速上升且发生显著波动,发生二度皮肤烧伤时间提前43.7 s。人体运动和织物中存在的水分均会作用于人体与环境的热交换过程,对于救援研判精度的影响不可忽略。

关键词: 消防服, 多层织物, 热质耦合, 传递模型, 皮肤烧伤, 衣下微环境

Abstract:

To improve the accuracy of human thermal injury assessment and protect rescuers' safety in thermal radiation environments, a coupled heat and mass transfer model of skin-microenvironment-firefighting clothing system was proposed to predict skin burn injuries under dynamic conditions. Based on mechanism of heat and moisture transfer in porous media, the periodic movement of fabric caused by human activities and its impact on heat and mass transfer in the skin-microenvironment-firefighting clothing system were considered. Furthermore, the proposed model was used to simulate skin temperature, time of skin burn, and the distribution of temperature and humidity in the fabric layers for both dry and wet cases in real time. The results show that the relative error between simulated values predicted by the model and the experimental measurements presented in the literature is only 3.79%. When exposed to 8.5 kW/m2 thermal radiation environments, the time to second-degree burn for the dry case is 33.7 s earlier than that for the wet case. When firefighters approach a 20 kW/m2 radiant heat source at a speed of 1 m/s, the heat transferred is impeded by the increase in thermal layer thickness. This extends the time for second-degree burns to occur by 10.9 s and reduces the heat absorbed by the skin surface by 20%. When the air gap thickness in the microenvironment is the same as the amplitude of the periodic motion of fabric, the skin temperature increases rapidly and fluctuates significantly, and the time to second-degree burn occurs 43.7 s earlier. Human body movement and moisture in fabric layers affect heat transfer process between the human body and thermal environment, thereby their impact on the accuracy of rescue assessments cannot be ignored.

Key words: firefighting protective clothing, multi-layered fabric, coupled heat and mass transfer, mass transfer model, skin burn, microenvironment

中图分类号: