中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (7): 201-208.doi: 10.16265/j.cnki.issn1003-3033.2025.07.1744

• 公共安全 • 上一篇    下一篇

山区低等级公路事故严重度致因与异质性对比分析

闫杰1(), 邢小亮1,**(), 孙鹏2, 张昱1, 彭汉杰3, 孙同波3   

  1. 1 山东省交通科学研究院 智慧交通中心, 山东 济南 250100
    2 山东省交通运输厅 工程建设事务中心, 山东 济南 250002
    3 山东省交通科学研究院 检测校准中心, 山东 济南 250100
  • 收稿日期:2025-03-13 修回日期:2025-05-19 出版日期:2025-07-28
  • 通信作者:
    ** 邢小亮(1988—),男,山东安丘人,博士,高级工程师,主要从事道路交通环境与安全方面的研究。E-mail:
  • 作者简介:

    闫 杰 (1996—),男,山东乐陵人,硕士,工程师,主要从事道路交通安全与环境方面的工作。E-mail:

    孙鹏 研究员

    张昱 高级工程师

    彭汉杰 研究员

    孙同波 研究员

  • 基金资助:
    国家重点研发计划项目(2018YFB1600103); 山东省交通科技计划项目(2023B43)

Comparative analysis of accident severity causation and heterogeneity on low-grade highways in mountainous areas

YAN Jie1(), XING Xiaoliang1,**(), SUN Peng2, ZHANG Yu1, PENG Hanjie3, SUN Tongbo3   

  1. 1 Institute Intelligent Transportation Center, Shandong Transportation Research Institute, Jinan Shandong 250100, China
    2 Engineering Construction Affairs Center, Shandong Provincial Department of Transportation, Jinan Shandong 250002, China
    3 Testing and Calibration Center, Shandong Transportation Research Institute, Jinan Shandong 250100, China
  • Received:2025-03-13 Revised:2025-05-19 Published:2025-07-28

摘要: 为明确山区低等级公路交通事故严重度影响因素的异质性效应来源,剖析事故严重度致因机制,以重庆市某山区低等级公路近7年事故数据为基础,采用固定参数Logit、混合Logit及考虑异质性来源的随机参数Logit模型,构建基于碰撞车型的事故严重度致因分析模型,对比分析不同模型的拟合优度与异质性差异,并借助平均弹性系数量化变量对事故严重度的影响强度。结果表明:在同类型事故中,考虑异质性来源的随机参数Logit模型拟合优度最高;在综合事故模型中,涉事非机动车对事故严重度的作用强度最大,正面碰撞为服从(-0.668,0.7492)正态分布的异质性变量,其参数均值和方差受夏季、大型肇事车的正向影响;在机-机事故模型中,季节、肇事车型的作用强度最大,夏季、中型肇事车、侧面碰撞对应参数服从均值(方差)分别为0.586、0.948、0.631的单侧三角分布,且与夜间、平曲线半径≥1 600 m存在均值异质性;在机-非事故模型中,事故严重度受涉事非机动车、夜间、正面碰撞变量显著影响,夜间、涉事非机动车对应参数服从均值(方差)分别为2.040、1.330的单侧三角分布,其参数均值与周末、年龄≥59 岁显著相关;合理切分山区低等级公路事故数据集,可有效降低事故严重度影响因素中的异质性效应,进而提升事故严重度致因分析结果的精确性和可靠性。

关键词: 山区低等级公路, 事故严重度, 致因分析, 异质性, Logit模型

Abstract:

In order to explore the heterogeneity sources of the influencing factors of traffic accident severity on low-grade highway and analyze the causal mechanisms of accident severity, based on traffic accident records of a low-grade highway in Chongqing city in the past 7 years, combined with the classification of collision vehicle types, the accident severity inducement analysis model was constructed using the fixed parameter Logit, mixed Logit, and random parameter Logit models considering heterogeneity sources. The differences in goodness-of-fit and heterogeneity of different models were analyzed, and the influence of significant variables on accident severity was quantified using average elasticity coefficient. The results show that the Logit model with random parameters considering heterogeneous sources has the highest goodness-of-fit under the same type of accident conditions. In the comprehensive accident model, the non-motor vehicle of the involved party has the greatest influence on the accident severity. The frontal collision is a heterogeneous variable that obeys a normal distribution of (-0.668, 0.7492). The mean and variance of the parameters are positively influenced by summer and large accident-causing vehicles. The season and involved vehicle types exhibit the largest effect intensity in the vehicle-to-vehicle accident model. The parameters associated with summer, mid-sized accident-causing vehicles, and side collisions follow a one-sided triangular distribution with mean (variance) of 0.586, 0.948, and 0.631, and have mean heterogeneity with the factors of night and horizontal curve radius greater than 1 600 m. The severity of vehicle-to-non-motor vehicle accidents is significantly affected by the variables of non-motor vehicle, night, and frontal collision. The parameters corresponding to the night and involved non-motor vehicle variables obey the unilateral triangular distribution of the mean (variance) 2.040 and 1.330, the mean value of parameters is significantly correlated with the weekend and age over 59 years old. Reasonably segmenting the accident dataset of low-grade highways in mountainous areas helps to reduce the heterogeneity effect in the factors affecting accident severity and improve the accuracy and reliability of accident severity cause analysis results.

Key words: mountainous low-grade highways, accident severity, causality analysis, heterogeneity, Logit model

中图分类号: