中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (1): 127-136.doi: 10.16265/j.cnki.issn1003-3033.2025.01.0309

• 安全工程技术 • 上一篇    下一篇

Cu-Mn型CO催化剂催化氧化特性及其影响因素研究

周露函1(), 姜延航2,**(), 李旭3, 孙亚胜男3, 王丽新4   

  1. 1 铜仁职业技术学院 工学院,贵州 铜仁 554300
    2 国能神东煤炭集团 补连塔煤矿, 内蒙古 鄂尔多斯 017209
    3 辽宁工程技术大学 安全科学与工程学院,辽宁 葫芦岛 125000
    4 北京建筑材料检验研究院股份有限公司,北京 100041
  • 收稿日期:2024-07-21 修回日期:2024-10-22 出版日期:2025-01-28
  • 通信作者:
    **姜延航(1996—),男,辽宁凤城人,工学硕士,从事采矿及“一通三防”等方面的工作。E-mail:
  • 作者简介:

    周露函 (1995—)女,贵州毕节人,硕士,讲师,主要从事安全工程专业教学与研究工作。E-mail:

    孙亚胜男 讲师

Study on catalytic oxidation characteristics and influencing factors of Cu-Mn type CO catalyst

ZHOU Luhan1(), JIANG Yanhang2,**(), LI Xu3, SUN Yashengnan3, WANG Lixin4   

  1. 1 School of Engineering,Tongren Polytechnic College,Tongren Guizhou 554300,China
    2 Bulianta Coal Mine,CHN Energy Shendong Coal Group Co.,Ltd.,Ordos Inner Mongolia 017209,China
    3 School of Safety Science and Engineering, Liaoning Technical University, Huludao Liaoning 125000, China
    4 Beijing Building Materials Testing Academy Co.,Ltd.,Beijing, 100041,China
  • Received:2024-07-21 Revised:2024-10-22 Published:2025-01-28

摘要:

为探究不同金属掺杂和沉淀温度对Cu-Mn型催化剂催化氧化CO性能的影响,首先采用共沉淀法制备Cu-Mn型CO催化剂,利用自主搭建的试验平台,测试分析不同金属掺杂和沉淀温度条件下Cu-Mn型CO催化剂催化氧化CO特性;然后通过全自动物理吸附仪和X射线衍射(XRD)分析仪获得催化剂的孔隙特征参数和表面晶型结构,采用原位漫反射红外光谱技术展示催化剂催化氧化CO的反应过程,并介绍催化剂在煤矿井下的应用前景。研究结果表明:试验测试时间内(80 s以内),随着反应时间的增加,CO体积分数表现为逐渐减小、缓慢增加后趋于平缓的变化特征,反应的CO物质的量逐渐增加。催化剂催化氧化CO效果越好,其比表面积越大,平均孔径越小,总孔容越大。当掺杂金属分别为Sn、Fe和Ce时,3种催化剂的催化氧化CO特性强弱由大到小为:CuMnOx-Ce>CuMnOx-Sn>CuMnOx-Fe,参与反应的CO物质的量分别为0.015 3、0.009 3和0.020 3 mol,CO消除效率分别为61%、47%和77%。沉淀温度为70 ℃时,催化剂的晶核数量要明显高于沉淀温度为60和80 ℃,当沉淀温度分别为60、70和80 ℃时,3种催化剂的催化氧化CO特性强弱由大到小为:CuMnOx-Ce-70>CuMnOx-Ce-80>CuMnOx-Ce-60,参与反应的CO物质的量分别为0.019 45、0.020 3和0.019 8 mol,CO消除速率分别为74%、77%和75%。含有丰富的表面氧空位是提高CO氧化反应和催化氧化性能的关键因素,CeO2的存在有助于含碳物种的形成、氧活化和迁移。

关键词: Cu-Mn型CO催化剂, 催化氧化特性, 金属掺杂, 沉淀温度, CO体积分数

Abstract:

In order to study the effect of different metal doping and precipitation temperatures on the catalytic oxidation of CO by Cu-Mn type catalyst, the co-precipitation method was used to prepare Cu-Mn type CO catalyst, and the catalytic oxidation of CO by Cu-Mn type CO catalyst under different metal doping and precipitation temperatures was tested and analyzed. The pore characteristics and surface crystal structure of the catalyst were obtained by automatic physical adsorption analyzer and X-ray diffraction (XRD). The reaction process of catalytic oxidation of CO was revealed by in-situ diffuse reflection infrared spectroscopy, and the potential application of the catalyst in coal mines was introduced. The results show that during the test time (within 80 s), with the increase of reaction time, the volume fraction of CO gradually decreased, slowly increased and then tended to be flat, and the amount of reactive CO substance gradually increased. The better the catalytic oxidation of CO, the larger the specific surface area, the smaller the average pore size and the larger the total pore volume. When the doped metals are Sn, Fe and Ce, the catalytic oxidation characteristics of the three catalysts are as follows: CuMnOx-Ce>CuMnOx-Sn>CuMnOx-Fe, the amount of CO involved in the reaction was 0.015 3, 0.009 3 and 0.020 3 mol, and the removal efficiency of CO was 61%, 47% and 77%, respectively. When the precipitation temperature is 70 ℃, the number of crystal nuclei of the catalyst is significantly higher than that of the precipitation temperature is 60 and 80 ℃. When the precipitation temperature is 60, 70 and 80 ℃ respectively, the catalytic oxidation characteristics of the three catalysts are as follows: CuMnOx-Ce-70>CuMnOx-Ce-80>CuMnOx-Ce-60, the amount of CO involved in the reaction was 0.019 45, 0.020 3 and 0.019 8 mol, and the elimination rates of CO were 74%, 77% and 75%, respectively. Abundant surface oxygen vacancy is the key factor to improve the performance of CO oxidation reaction and catalytic oxidation. The presence of CeO2 contributes to the formation, oxygen activation and migration of carbon-containing species.

Key words: Cu-Mn type CO catalyst, catalytic oxidation characteristic, metal doping, precipitation temperature, CO volume fraction

中图分类号: