中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (S2): 36-42.doi: 10.16265/j.cnki.issn1003-3033.2025.S2.0005

• 安全工程技术 • 上一篇    下一篇

钢管混凝土束密实度筛查的工程应用研究

杨志辉1(), 汤斐超1, 李庆文2,**()   

  1. 1 中交一公局集团有限公司, 北京 100024
    2 北京科技大学 资源与安全工程学院, 北京 100083
  • 收稿日期:2025-08-15 出版日期:2026-02-04
  • 通信作者:
    **李庆文(1986—)男,辽宁朝阳人,博士,教授,主要从事岩石力学、能源地下结构与结构动力学方面的研究。E-mail:
  • 作者简介:

    杨志辉 (1984—)男,湖南益阳人,本科,高级工程师,主要从事建筑健康监测、结构动力学等方面的研究。Email:

    汤斐超 高级工程师

    李庆文 教授

Engineering application on screening of compactness of concrete-filled steel tubular

YANG Zhihui1(), TANG Feichao1, LI Qingwen2,**()   

  1. 1 China First Highway Engineering Co., Ltd., Beijing 100024, China
    2 School of Resources and Safety Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2025-08-15 Published:2026-02-04

摘要:

针对钢管混凝土束(CFST)结构内部脱空及密实度缺陷难以高效识别的问题,提出一种基于激光多普勒测振的非接触振动检测与密实度筛查方法。通过构建柔度矩阵高斯曲率指标表征结构表面振动响应的曲率变化,并引入贝叶斯融合算法实现多源振动数据的自适应整合,建立一套适用于工程现场的密实度识别与评价体系。结果表明:有限元模型在前4阶模态参数上与实测结果吻合良好,所建模型能够合理反映钢管束结构的动力学特性。现场试验结果显示,该方法在复杂施工噪声条件下仍能稳定提取主要模态参数,并对浅层与深层缺陷有较高的定位精度与识别鲁棒性。

关键词: 钢管混凝土束(CFST), 激光多普勒, 密实度, 最小二乘复指数法(LSCE), 工程应用

Abstract:

To address the challenge of efficiently identifying internal voids and compactness defects in CFST structures, a non-contact vibration detection and compactness screening method based on a laser Doppler vibrometer was proposed. A Gaussian curvature index of the flexibility matrix was constructed to characterize the curvature variation of surface vibration responses, while a Bayesian fusion algorithm was introduced to achieve adaptive integration of multi-source vibration data. On this basis, an on-site applicable framework for compactness identification and evaluation was established. The results show that the finite element model is in good agreement with the experimental results in the first four modal parameters, demonstrating that the model reasonably represents the dynamic characteristics of CFST structures. Field tests further confirm that the proposed approach can extract dominant modal parameters under complex construction noise and identify both shallow and deep defects with high accuracy and robustness.

Key words: concrete-filled steel tubular (CFST), laser Doppler, compactness, least squares complex exponential method (LSCE), engineering application

中图分类号: