[1] |
8·2昆山工厂爆炸事故[EB/OL]. (2016-10-31). https://baike.baidu.com/item/8·2昆山工厂爆炸事故/15199616?fr=aladdin.
|
[2] |
程关兵, 王国大, 黄燕晓. 氢气爆燃转爆轰特性试验研究[J]. 中国安全科学学报, 2016, 26(12):64-68.
|
|
CHENG Guanbing, WANG Guoda, HUANG Yanxiao. Experimental study on characteristics of hydrogen deflagration to detonation transition[J]. China Safety Science Journal, 2016, 26(12):64-68.
|
[3] |
BIDABADI M, POORFAR A K, WANG Shaobin, et al. A comparative study of different burning time models for the combustion of aluminum dust particles[J]. Applied Thermal Engineering, 2016, 105:474-782.
doi: 10.1016/j.applthermaleng.2016.03.022
|
[4] |
BIDABADI M, ZADSIRJAN S, MOSTAFAVI S A. Radiation heat transfer in transient dust cloud flame propagation[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(4): 862-868.
doi: 10.1016/j.jlp.2013.03.002
|
[5] |
CATOIRE L, LEGENDRE J F, GIRAUD M. Kinetic model for aluminum-sensitized ram accelerator combustion[J]. Journal of propulsion and power, 2003, 19(2):196-202.
doi: 10.2514/2.6118
|
[6] |
BOJKO B T, DESJARDIN P E, WASHBURN E B. On modeling the diffusion to kinetically controlled burning limits of micron-sized aluminum particles[J]. Combustion and Flame, 2014, 161:3 211-3 221.
doi: 10.1016/j.combustflame.2014.06.011
|
[7] |
陈刚, 张晓蕾, 徐帅, 等. 我国2005—2020年粉尘爆炸事故统计分析[J]. 中国安全科学学报, 2022, 32(8):76-83.
doi: 10.16265/j.cnki.issn1003-3033.2022.08.0812
|
|
CHEN Gang, ZHANG Xiaolei, XU Shuai, et al. Statistical analysis of dust explosion accidents in China from 2005 to 2020[J]. China Safety Science Journal, 2022, 32(8):76-83.
doi: 10.16265/j.cnki.issn1003-3033.2022.08.0812
|
[8] |
纪文涛. 气粉两相混合体系爆炸及泄放特性研究[D]. 大连: 大连理工大学, 2018.
|
|
JI Wentao. Study on explosion and discharge characteristics of gas-powder two-phase hybrid system[D]. Dalian: Dalian University of Technology, 2018.
|
[9] |
CASHDOLLAR K L, HERTZBERG M. 20-l explosibility test chamber for dusts and gases[J]. Review of Scientific Instruments, 1985, 56(4):596-602
doi: 10.1063/1.1138295
|
[10] |
姜海鹏. 固态抑爆剂抑制铝粉尘爆炸机理研究[D]. 大连: 大连理工大学, 2019.
|
|
JIANG Haipeng. Study on the mechanism of solid explosion suppressant to inhibit aluminum dust explosion[D]. Dalian: Dalian University of Technology, 2019.
|
[11] |
SWIHART M T, CATOIRE L, LEGRAND B, et al. Rate constants for the homogeneous gas-phase Al/HCl combustion chemistry[J]. Combustion and Flame, 2003, 132(1):91-101.
doi: 10.1016/S0010-2180(02)00426-1
|
[12] |
FERNADEZ-GALISTEO D, SANCHEZ A L, LINAN A, et al. One-step reduced kinetics for lean hydrogen-air deflagration[J]. Combustion and Flame, 2009, 156(5):985-996.
doi: 10.1016/j.combustflame.2008.10.009
|
[13] |
STAIRK A M, KULESHOV P S, SHARIPOV A S, et al. Numerical analysis of nanoaluminum combustion in steam[J]. Combustion and Flame, 2014, 161(6):1 659-1 667.
doi: 10.1016/j.combustflame.2013.12.007
|
[14] |
BURCAT A, RUSCIC B. Third millennium ideal gas and condensed phase thermochemical database for combustion with updates from active thermochemical tables[DB/OL]. (2003-03-13). http://garfield.chem.elte.hu/Burcat/burcat.html.
|
[15] |
PARR T P, JOHNSON C, HANSON-PARR D, et al. Evaluation of advanced fuels for underwater propulsion[C]. 39th JANNAF Combustion Subcommittee Meeting, 2003.
|
[16] |
HUANG Ying, RISHA G A, YANG V, et al. Analysis of nano-aluminum particle dust cloud combustion in different oxidizer environments[C]. 43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005:DOI: 10.2514/6.2005-738.
|