[1] |
姬浩, 王永东, 李佩, 等. 事故车辆影响下的城市三车道道路交通流仿真[J]. 中国安全科学学报, 2021, 31(3):112-120.
doi: 10.16265/j.cnki.issn1003-3033.2021.03.016
|
|
JI Hao, WANG Yongdong, LI Pei, et al. Traffic flow simulation of urban three-lane road considering influence of accident vehicle[J]. China Safety Science Journal, 2021, 31(3):112-120.
doi: 10.16265/j.cnki.issn1003-3033.2021.03.016
|
[2] |
熊晓夏, 刘擎超, 沈钰杰, 等. 基于LSTM-BF的高速公路交通事故风险模型[J]. 中国安全科学学报, 2022, 32(5):170-176.
doi: 10.16265/j.cnki.issn1003-3033.2022.05.1602
|
|
XIONG Xiaoxia, LIU Qingchao, SHEN Yujie, et al. Study on risk model of highway traffic accidents based on LSTM-BF[J]. China Safety Science Journal, 2022, 32(5):170-176.
doi: 10.16265/j.cnki.issn1003-3033.2022.05.1602
|
[3] |
SMITH B L, WILLIAMS B M, OSWALD R K. Comparison of parametric and nonparametric models for traffic flow forecasting[J]. Transportation Research Part C, 2002, 10(4):303-321.
|
[4] |
GUO Jianhua, HUANG Wei, WILLIAMS B M. Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification[J]. Transportation Research Part C, 2014, 43(2):50-64.
|
[5] |
ZHAO Ling, SONG Yujiao, ZHANG Chao, et al. T-gcn: a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(9): 3848-3858.
|
[6] |
MA Xiaolei, DAI Zhuang, HE Zhengbing, et al. Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction[J]. Sensors, 2017, 17(4):DOI:10.3390/s17040818.
|
[7] |
MA Xiaolei, TAO Zhimin, WANG Yinhai, et al. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data[J]. Transportation Research Part C: Emerging Technologies, 2015, 54: 187-197.
|
[8] |
段宗涛, 张凯, 杨云, 等. 基于深度CNN-LSTM-ResNet组合模型的出租车需求预测[J]. 交通运输系统工程与信息, 2018, 18(4):215-223.
|
|
DUAN Zongtao, ZHANG Kai, YANG Yun, etal. Taxi Demand prediction based on CNN-LSTM-ResNet hybrid depth learning model[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(4):215-223.
|
[9] |
KARIM F, MAJUMDAR S, DARABI H, et al. LSTM fully convolutional networks fortime series classification[J]. IEEE Access, 2017, 6: 1662-1669.
|
[10] |
PENG Hao, DU Bowen, LIU Mingsheng, et al. Dynamic graph convolutional network for long-term traffic flow prediction with reinforcement learning[J]. Information Sciences, 2021, 578:401-416.
|
[11] |
XING Lumin, LIU Wenjian. A data fusion powered Bi-Directional long short term memory model for predicting multi-lane short term traffic flow[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(9):16810-16 819.
|
[12] |
SHU Wanneng, CAI Ken, XIONG Naixue. A short-term traffic flow prediction model based on an improved gate recurrent unit neural network[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(9):16654-16 665.
|
[13] |
SHI Xingjian, CHEN Zhourong, WANG Hao, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]. International Conference on Neural Information Processing Systems, 2015: 802-810.
|
[14] |
ZHAO Yiji, LIN Youfang, WEN Haomin, et al. Spatial-temporal position-aware graph convolution networks for traffic flow forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(8):8650-8666.
|
[15] |
GUO Shengnan, LIN Youfang, LI Shijie, et al. Deep spatial-temporal 3D convolutional neural networks for traffic data forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10):3913-3926.
|