中国安全科学学报 ›› 2024, Vol. 34 ›› Issue (9): 217-224.doi: 10.16265/j.cnki.issn1003-3033.2024.09.1544

• 防灾减灾技术与工程 • 上一篇    下一篇

城市动态灾害环境下多种类多目标路径优化算法

张盈斐1,2(), 李航1,2, 齐玉亮3, 王伟明3, 张海林4, 胡小兵1,2   

  1. 1 中国民航大学 安全科学与工程学院,天津 300300
    2 中国民航大学 体系安全与智能决策实验室,天津 300300
    3 河北省高速公路京雄筹建处,河北 保定 071000
    4 北京交科公路勘察设计研究院,北京 100191
  • 收稿日期:2024-03-14 修回日期:2024-06-20 出版日期:2024-09-28
  • 作者简介:

    张盈斐 (1995—),女,河南禹州人,博士研究生,主要研究方向为应急管理、智能计算。E-mail:

    胡小兵,教授

  • 基金资助:
    中央高校基本科研业务费专项资金(3122023034); 中央高校基本科研业务费专项资金(3122019057); 河北省交通运输厅科技项目(JX-202002)

Multi-category multi-objective path optimization algorithm in urban dynamic disaster environments

ZHANG Yingfei1,2(), LI Hang1,2, QI Yuliang3, WANG Weiming3, ZHANG Hailin4, HU Xiaobing1,2   

  1. 1 College of Safety Science and Engineering, Civil Aviation University of China, Tianjin 300300, China
    2 Laboratory of System Safety and Intelligent Decisions, Civil Aviation University of China, Tianjin 300300, China
    3 Hebei Province Highway Jingxiong Preparatory Office, Baoding Hebei 071000, China
    4 Jiaoke Transport Consultants Ltd., Beijing 100191, China
  • Received:2024-03-14 Revised:2024-06-20 Published:2024-09-28

摘要:

为提高城市应对动态灾害的响应能力,针对动态灾害环境中应急车辆行驶路线的规划问题,考虑路径安全度为乘法权重,车辆行驶路径长度和通行时间为加法权重,首先,提出一种动态环境下可同时计算乘法与加法权重的多种类多目标路径优化问题(MCMPOP)的求解模型;其次,通过改进涟漪扩散算法(RSA)求解MCMPOP;然后,为验证算法的有效性,通过510组仿真试验,对比MCMPOP下非支配排序遗传算法(NSGA)-Ⅱ与改进RSA的计算时间与解的质量;最后,选取“7·20”郑州特大暴雨事件数据进行实例验证。结果表明:与NSGA-II相比,改进的RSA可以求解出完整的Pareto最优路径集合,有效保证算法的计算效率和Pareto最优解的质量;可在应急车辆可接受的安全范围内,筛选出行驶路线长度和时间成本较小的Pareto最优路径,为应急车辆提供更多可靠的行驶路线,提高城市的应急管理能力。

关键词: 动态灾害环境, 多种类多目标路径优化问题(MCMPOP), 涟漪扩散算法(RSA), 路线规划, Pareto前沿

Abstract:

To improve urban response capabilities in dealing with dynamic disasters, a MCMPOP was proposed for planning emergency vehicle paths in dynamic disaster environments. This model considered path safety as a multiplicative weight and vehicle path length and travel time as additive weights. Then, MCMPOP was addressed by improving the RSA. To verify the effectiveness of the improved RSA in solving the MCMPOP, 510 simulation experiments were conducted comparing the computer time and solution quality of the Non-dominated Sorting Genetic Algorithm(NSGA)-Ⅱ and the improved RSA. Furthermore, "7·20" Zhengzhou rainstorm event was selected as a case study to validate the model. The results show that, compared to the NSGA-II, the improved RSA can find a complete set of Pareto optimal paths, effectively ensuring the optimality and computational efficiency of the algorithm. By using RSA to solve MCMPOP, it is possible to successfully select Pareto optimal paths with the shortest travel path lengths and the lowest time costs within the acceptable path safety range for emergency vehicles, providing more reliable routes for emergency vehicles and enhancing the urban emergency management capabilities.

Key words: dynamic disaster environment, multi-category multi-objective path optimization problem (MCMPOP), ripple spreading algorithm (RSA), path planning, Pareto front

中图分类号: