[1] |
MOUADDIB E M, PAMART A, PIERROT-DESEILLIGNY M, et al. 2D/3D data fusion for the comparative analysis of the vaults of Notre-Dame de Paris before and after the fire[J]. Journal of Cultural Heritage, 2024, 65: 221-231.
|
[2] |
陈舒洁, 刘永健, 秋原雅人, 等. 基于文化遗产价值的闽浙木拱廊桥防火策略[J]. 建筑科学与工程学报, 2022, 39(6): 163-174.
|
|
CHEN Shujie, LIU Yongjian, AKIHARA M, et al. Fire prevention strategy of wooden arch covered bridge in Min-Zhe area based on cultural heritage value[J]. Journal of Architecture and Civil Engineering, 2022, 39(6): 163-174.
|
[3] |
文物局. 国家文物局关于推进文物火灾隐患整治和消防能力提升三年行动加强安全生产工作的通知[EB/OL]. (2022-04-22). https://www.gov.cn/zhengce/zhengceku/2022-04/22/content_5686643.htm.
|
[4] |
ÖSTMAN B, TSANTARIDIS L. Durability of the reaction to fire performance for fire retardant treated (FRT) wood products in exterior applications: a ten years report[C]. MATEC Web of Conferences 46. EDP Sciences, 2016: DOI: 10.1051/MATECCONF/20164605005.
|
[5] |
CHORLTON B, GALES J. Fire performance of cultural heritage and contemporary timbers[J]. Engineering Structures, 2019, 201: DOI: 10.1016/j.engstruct.2019.109739.
|
[6] |
国家文物局-不可移动文物信息[Z/OL]. [2023-08-10]. http://www.ncha.gov.cn/col/col2266/index.html.
|
[7] |
CIRULE D, KUKA E, ANDERSONE I, et al. Wood discoloration patterns depending on the light source[J]. Heritage Science, 2022, 10(1): DOI: 10.1186/s40494-022-00795-2.
|
[8] |
KANBAYASHI T, MATSUNAGA M, KOBAYASHI M. Effects of natural weathering on the chemical composition of cell walls in sapwood and heartwood of Japanese cedar[J]. Wood Science and Technology, 2021, 55(4): 1013-1024.
|
[9] |
OBERHOFNEROVÁ E, PANEK M. Surface wetting of selected wood species by water during initial stages of weathering[J]. Wood Research, 2016, 61(4): 545-552.
|
[10] |
TRIBULOVÁ T, KAČÍK F, EVTUGUIN D, et al. Assessment of chromophores in chemically treated and aged wood by uv-vis diffuse reflectance spectroscopy[J]. Cellulose Chemistry and Technology, 2016, 50: 659-667.
|
[11] |
PIENIAK D, OGRODNIK P J, OSZUST M, et al. Reliability of the thermal treated timber and wood-based materials in high temperatures[J]. Eksploatacja i Niezawodnosc-Maintenance and Reliability, 2013, 15(1): 18-24.
|
[12] |
HU Mian, CHEN Zhihua, WANG Shengkai, et al. Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser-Suzuki deconvolution, and iso-conversional method[J]. Energy Conversion and Management, 2016, 118: 1-11.
|
[13] |
RICHTER F, REIN G. A multiscale model of wood pyrolysis in fire to study the roles of chemistry and heat transfer at the mesoscale[J]. Combustion and Flame, 2020, 216: 316-325.
|
[14] |
BARTLETT A I, HADDEN R M, BISBY L A. A review of factors affecting the burning behaviour of wood for application to tall timber construction[J]. Fire Technology, 2019, 55(1): 1-49.
|
[15] |
王苏盼, 黄鑫炎, 李开源. 木质材料火灾研究:前沿与展望[J]. 工程热物理学报, 2021, 42(10): 2700-2719.
|
|
WANG Supan, HUAN Xinyan, LI Kaiyuan. A review of fire research on wood materials: research advances and prospects[J]. Journal of Engineering Thermophysics, 2021, 42(10): 2700-2719.
|
[16] |
QUINTIERE J G. A theoretical basis for flammability properties[J]. Fire and Materials, 2006, 30(3): 175-214.
|
[17] |
CRIELAARD R, KUILEN J W V D, TERWEL K, et al. Self-extinguishment of cross-laminated timber[J]. Fire Safety Journal, 2019, 105: 244-260.
doi: 10.1016/j.firesaf.2019.01.008
|
[18] |
LIANG Zhirong, LIN Shaorun, HUANG Xinyan. Smoldering ignition and emission dynamics of wood under low irradiation[J]. Fire and Materials, 2022, 47(4): 514-524.
|
[19] |
PAAVOLA A R, SUKHOMLINOV D, HOSTIKKA S. Modelling charring and burning of spruce and Pine woods during pyrolysis, smoldering and flaming[J]. Fire Technology, 2023, 59(5): 2751-2786.
|
[20] |
HASEMI Y. Experimental wall flame heat transfer correlations for the analysis of upward wall flame spread[J]. Fire Science and Technology, 1984, 4(2): 75-90.
|
[21] |
BORGIN K, FAIX O, SCHWEERS W. The effect of aging on lignins of wood[J]. Wood Science and Technology, 1975, 9(3): 207-211.
|
[22] |
WANG Haiyan, TIAN Yao, ZHANG Lei. Experimental study of the characteristic parameters of the combustion of the wood of ancient buildings[J]. Journal of Fire Sciences, 2019, 37(2): 117-136.
doi: 10.1177/0734904118822049
|
[23] |
ZACHAR M, CABALOVA I, KACIKOVA D, et al. Effect of natural aging on oak wood fire resistance[J]. Polymers, 2021, 13: DOI: 10.3390/polym13132059.
|
[24] |
邓军, 宋佳佳, 赵婧昱, 等. 自然老化木材燃烧过程热行为特性研究[J]. 中国安全科学学报, 2022, 32(2): 83-89.
doi: 10.16265/j.cnki.issn1003-3033.2022.02.012
|
|
DENG Jun, SONG Jiajia, ZHAO Jingyu, et al. Analysis on thermal characteristics of naturally aging wood during combustion[J]. China Safety Science Journal, 2022, 32(2): 83-89.
doi: 10.16265/j.cnki.issn1003-3033.2022.02.012
|
[25] |
SONG Jiajia, DENG Jun, ZHAO Jinyu, et al. Comparative analysis of exothermic behaviour of fresh and aged pine wood[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147: 14 393-14 406.
|
[26] |
LIU Hao, LI Mi, ZHAO Shuna, et al. Insights into wood species and aging effects on pyrolysis characteristics and combustion model by multi kinetics methods and model constructions[J]. Renewable Energy, 2023, 206: 784-794.
|
[27] |
WANG Yufei, WANG Weibin, ZHOU Haibin, et al. Burning characteristics of ancient wood from traditional buildings in Shanxi province, China[J]. Forests, 2022, 13(2): DOI: 10.3390/f13020190.
|
[28] |
LIU Hao, LI Mi, JIANG Lin, et al. Experimental and theoretical study on ignition and combustion characteristics of aging woods by cone calorimetry[J]. Journal of Thermal Analysis and Calorimetry, 2023, 148(20): 10 573-10 582.
|
[29] |
MATVEEVA A, KOMAROVSKIKH A, KUZNETSOV A, et al. Aging of mechanically activated wood: effect on the burning ability[J]. Thermal Science, 2022, 26(18): 605-612.
|
[30] |
BORISOVICH S A, ALEXANDROVICH B A, ABDUKADIROVICH M B, et al. Fire hazard and fire resistance of wooden structures[M]. Cham: Springer, 2023: 63-113.
|
[31] |
龙邈天, 易亮, 颜龙, 等. 自然老化对古建筑马尾松燃烧行为和力学性能的影响[J]. 消防科学与技术, 2024, 43(4): 487-491, 497.
|
|
LONG Miaotian, YI Liang, YAN Long, et al. The effect of natural aging on the combustion and mechanical properties of ancient architectural pinusmassoniana[J]. Fire Science and Technology, 2024, 43(4): 487-491, 497.
|
[32] |
VOLKMER T, ARIETANO L, PLUMMER C, et al. Loss of tensile strength in cellulose tissue on the surface of spruce (Picea abies) caused by natural photodegradation and delignification[J]. Polymer Degradation and Stability, 2013, 98(6): 1118-1125.
|
[33] |
INAGAKI T, YONENOBU H, TSUCHIKAWA S. Near-infrared spectroscopic monitoring of the water adsorption/desorption process in modern and archaeological wood[J]. Applied Spectroscopy, 2008, 62(8): 860-865.
doi: 10.1366/000370208785284312
pmid: 18702858
|
[34] |
SIVENKOV A B. Influence of physical and chemical characteristics of wood on its fire danger and efficiency of fire protection[J]. High-Molecular Compounds, 2015, 2: 6-22.
|
[35] |
MARTINKA J, CHREBET T, KRáL J, et al. An examination of the behaviour of thermally treated spruce wood under fire conditions[J]. Wood Research, 2013, 58(4): 599-605.
|
[36] |
SONG Jiajia, ZHAO Jingyu, DENG Jun, et al. Effect mechanism of dry and wet alternate ageing on wood during exothermic behaviour[J]. Journal of Thermal Analysis and Calorimetry, 2023, 149(18): 10 277-10 295.
|
[37] |
DEDIC A D, SVRZIC S V, JANEVSKI J N, et al. Three-dimensional model for heat and mass transfer during convective drying of wood with microwave heating[J]. Journal of Porous Media, 2018, 21(10): 877-886.
|
[38] |
YORULMAZ S Y, ATIMTAY A T. Investigation of combustion kinetics of treated and untreated waste wood samples with thermogravimetric analysis[J]. Fuel Processing Technology, 2009, 90(7): 939-946.
|
[39] |
ZHOU Biao, WANG Kai, LIUCHEN Yanyi, et al. Experimental study of upward flame spread over discrete weathered wood chips[J]. International Journal of Architectural Heritage, 2022, 16(12): 1797-1808.
doi: 10.1080/15583058.2021.1908446
|
[40] |
ASEEVA R M, BARBOTKO S L, SERKOV B B, et al. Effect of operating time of wood on its fire hazardous properties[C]. Collection of X International Conference "Oligomers-2009", 2009: 270-295.
|
[41] |
MATSUYAMA Y, TAKAHASHI F. In-depth temperature and smoke production of charring wood under a constant external heat flux[J]. Journal of Fire Sciences, 2021, 40(1): 70-93.
|
[42] |
MATSUMIYA K, OIKAWA K. Quantitative analysis of fire spreading potential for surrounding areas of cultural properties in Kyoto city[J]. Journal of Asian Architecture and Building Engineering, 2013, 12(2): 269-276.
|
[43] |
闫怀林. 典型木结构建筑燃烧及火蔓延行为研究[D]. 徐州: 中国矿业大学, 2022.
|
|
YAN Huailin. Study on combustion and fire spread behaviors of typical wood structure buildings[D]. Xuzhou: China University of Mining and Technology, 2022.
|
[44] |
ZHAO Jingyu, JIANG Xinrong, SONG Jiajia, et al. Influence of natural aging on wood combustion heat release[J]. Wood Science and Technology, 2024, 58(3): 1227-1257.
|
[45] |
ZHOU Biao, WANG Kai, YANG Wanyu, et al. Influence of woodgrain orientation on the upward flame spread over discrete wood chips[J]. Case Studies in Thermal Engineering, 2021, 28: DOI: 10.1016/j.csite.2021.101616.
|
[46] |
ZHOU Biao, WANG Kai, XU Min, et al. Influence of air-gap and thickness on the upward flame spread over discrete wood chips[J]. Thermal Science and Engineering Progress, 2021, 26: DOI: 10.1016/j.tsep.2021.101106.
|
[47] |
WANG Kai, WANG Dezheng, ZHOU Biao, et al. Influence of air gap ratio of the Chinese historical wooden window on the vertical flame spread performance[J]. Thermal Science and Engineering Progress, 2022, 32: DOI: 10.1016/j.tsep.2022.101308.
|
[48] |
ZHOU Yang, ZHOU Penghui, BU Rongwei, et al. Horizontal flame spread behavior of densified wood: effect of structural characteristics[J]. Fuel, 2024, 362: DOI: 10.1016/j.fuel.2023.130687.
|