China Safety Science Journal ›› 2023, Vol. 33 ›› Issue (S1): 119-127.doi: 10.16265/j.cnki.issn1003-3033.2023.S1.2481
• Safety engineering technology • Previous Articles Next Articles
RUAN Shunling1,2(), HAN Simiao1,2,**(
), ZHANG Ningning1, GU Qinghua1,2, LU Caiwu1,3
Received:
2023-02-14
Revised:
2023-05-08
Online:
2023-06-30
Published:
2023-12-31
Contact:
HAN Simiao
RUAN Shunling, HAN Simiao, ZHANG Ningning, GU Qinghua, LU Caiwu. Prediction method of saturation line of tailings dam based on CNN-aGRU fusion model[J]. China Safety Science Journal, 2023, 33(S1): 119-127.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2023.S1.2481
Tab.1
Pseudo code of prediction model solving algorithm
算法1 CNN-aGRU 输入:浸润线数据xg,属性集X={x0,x1,…,xi},(i=1,2,…,n,i≠g),模型迭代次数epochs,单次进入训练集的数据个数。 输出:训练集均方误差,测试集均方误差,模型运行时间t。 |
---|
1. for i=1∶n; 2.利用数组构造函数array对数据集X进行转换; 3.获取转换后的数据集Xi; 4. end for; 5.对数据集Xi进行归一化处理; 6.划分数据集,70%为训练数据,30%为测试数据; 7. trainX=[训练样本,时间步长,特征]; 8. testX=[测试样本,时间步长,特征]; 9. look_back =11; 10.构建CNN-aGRU模型,设置模型参数; 11. input_shape = (1,look_back); 12. loos = 'mean_squared_error'; 13. optimizer = 'AdamW'; 14. activation = 'ELU'; 15. epoch = 400, batch_size = 10; 16. dropout = 0.3; 17.训练模型; 18.从训练好的模型中预测训练数据和测试数据; 19. predict(trainX)〗;predict(testX); 20. for i=1∶n; 21.将预测数据进行反归一化; 22. end for; 23.计算训练集上的均方误差trainScore; 24.计算测试集上的均方误差testScore; 25. return T,trainScore,testScore。 |
Tab.2
Monitoring project description
监测点 | 监测项目描述 |
---|---|
GT1、GT2 | 监测干滩长度,干滩长度是指从滩顶到库区水边的水平距离,可以反映尾矿库的安全运行情况 |
KSW | 库水位监测,能反映尾矿库的排放能力,确保选矿厂的生产用水 |
JYL | 降雨量监测,尾矿库的安全稳定性很大程度上受降雨等环境变化影响 |
WBWY-1-21、 WBWY-2-21、 WBWY-3-21 NBWY2-21-1、 NBWY2-21-2、 NBWY2-21-3 | 坝体位移监测,通过内、外部位移的变化可以捕捉坝体变形的变量和趋势,常用于尾矿库早期预警 |
JRX-1-21、 JRX-2-21、 JRX-3-21 | 浸润线监测,浸润线是坝体渗透水的顶部水面线,与坝体的安全稳定性息息相关 |
Tab.4
Analysis of influence of number of convolution kernels on prediction results
卷积核个数 | MAPE/% | MAE | MSE | RMSE | R2 |
---|---|---|---|---|---|
8,16,32 | 3.568 420 | 0.018 114 | 0.000 680 | 0.026 080 | 0.974 77 |
16,32,64 | 1.526 020 | 0.006 461 | 0.000 070 | 0.008 367 | 0.997 404 |
32,64,128 | 2.112 406 | 0.007 768 | 0.000 123 | 0.011 110 | 0.995 423 |
64,128,256 | 2.193 322 | 0.008 283 | 0.000 128 | 0.011 317 | 0.995 251 |
Tab.5
Analysis of influence of number of GRU layers on prediction results
GRU层数 | MAPE/% | MAE | MSE | RMSE | R2 |
---|---|---|---|---|---|
1 | 2.474 627 | 0.010 081 | 0.000 154 | 0.012 426 | 0.994 275 |
2 | 2.247 059 | 0.008 414 | 0.000 129 | 0.011 338 | 0.995 233 |
3 | 1.590 019 | 0.007 086 | 0.000 085 | 0.009 234 | 0.996 838 |
4 | 2.635 393 | 0.012 423 | 0.000 239 | 0.015 448 | 0.992 482 |
Tab.6
Analysis of influence of number of neurons in a GRU layer on prediction results
GRU层神经元/个 | MAPE/% | MAE | MSE | RMSE | R2 |
---|---|---|---|---|---|
16 | 2.357 062 | 0.009 037 | 0.000 131 | 0.011 458 | 0.995 132 |
32 | 1.815 581 | 0.007 592 | 0.000 123 | 0.011 072 | 0.992 482 |
64 | 1.767 266 | 0.006 059 | 0.000 067 | 0.008 204 | 0.997 504 |
128 | 2.575 169 | 0.009 158 | 0.000 150 | 0.012 252 | 0.994 433 |
Tab.8
Prediction model performance analysis
模型 | MAPE | MAE | MSE | RMSE | R2 |
---|---|---|---|---|---|
LSTM | 0.017 813 97 | 0.008 535 | 0.000 134 | 0.011 597 | 0.995 013 |
GRU | 0.028 554 64 | 0.012 445 | 0.000 304 | 0.017 442 | 0.988 719 |
CNN-aGRU2 | 0.026 491 09 | 0.011 367 | 0.000 203 | 0.014 239 | 0.992 452 |
CNN-aGRU | 0.013 915 62 | 0.005 432 | 0.000 045 | 0.006 702 | 0.998 334 |
[1] |
于广明, 宋传旺, 潘永战, 等. 尾矿坝安全研究的国外新进展及我国的现状和发展态势[J]. 岩石力学与工程学报, 2014, 33(增1):3 238-3 248.
|
|
|
[2] |
doi: 10.1139/cjes-2017-0186 |
[3] |
张家荣, 刘建林. 中国尾矿库溃坝与泄露事故统计及成因分析[J]. 中国钼业, 2019, 43(4): 10-14.
|
|
|
[4] |
曾纪涵, 章光, 吴浩, 等. 改进POT模型下尾矿坝综合预警值确定方法[J]. 中国安全科学学报, 2022, 32(5):134-139.
doi: 10.16265/j.cnki.issn1003-3033.2022.05.1699 |
doi: 10.16265/j.cnki.issn1003-3033.2022.05.1699 |
|
[5] |
阳雨平, 黄丕森, 陈国国. 基于改进FIM-未确知测度的尾矿库风险评价模型及应用[J]. 安全与环境学报, 2021, 21(3):996-1 004.
|
|
|
[6] |
张岳安, 周科平. 浸润线埋深对尾矿坝稳定性的指标满意度敏感性分析[J]. 中国安全科学学报, 2013, 23(10):93-99.
|
|
|
[7] |
李小军, 梅国栋, 苏军, 等. 灰色理论模型在尾矿库浸润线监测预测的应用[J]. 中国矿业, 2021, 30(增1):130-133.
|
|
|
[8] |
许同乐, 王营博, 孟祥川, 等. 改进的灰色神经网络预测方法[J]. 北京邮电大学学报, 2018, 41(6):52-57,64.
doi: 10.13190/j.jbupt.2018-072 |
|
|
[9] |
戴健非, 杨鹏, 诸利一, 等. 集成PCA和LSTM神经网络的浸润线预测方法[J]. 中国安全科学学报, 2020, 30(3):94-101.
doi: 10.16265/j.cnki.issn1003-3033.2020.03.015 |
|
|
[10] |
刘传立, 刘小生, 李妍妍. 基于GEP的金属矿尾矿坝变形预测模型研究[J]. 有色金属科学与工程, 2013, 4(6):63-68.
|
|
|
[11] |
杜年春, 粟闯. 基于时间序列分析的浸润线预测分析[J]. 电子技术与软件工程, 2013(23):204-205.
|
[12] |
随晓丹, 罗周全, 秦亚光, 等. 基于小波分解的尾矿坝浸润线预测方法研究[J]. 黄金科学技术, 2019, 27(1):137-143.
|
|
|
[13] |
邹伟霞, 李慧敏. 基于灰色模型GM(1,1)的尾矿坝浸润线预测[J]. 现代矿业, 2011, 27(11):314-316.
|
|
|
[14] |
邱俊博, 胡军. 基于ELM的尾矿坝浸润线预测[J]. 有色金属工程, 2021, 11(2):103-109.
|
|
|
[15] |
李春民, 王云海, 张兴凯, 等. 尾矿坝浸润线序列的支持向量机预测研究[J]. 金属矿山, 2010(12):18-21.
|
|
|
[16] |
doi: 10.1109/LSP.2017.2657381 |
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
doi: 10.5194/adgeo-5-89-2005 |
[23] |
唐成龙, 谌颃, 唐海春, 等. 大数据背景下数据预处理方法研究运用[J]. 信息记录材料, 2021, 22(9):199-200.
|
[1] | ZHANG Qi, JIRGEL. Detection algorithm of slime water overflow based on convolutional neural network [J]. China Safety Science Journal, 2023, 33(S1): 192-195. |
[2] | LIU Di, LU Caiwu, LIAN Minjie, GU Qinghua, JING Ying. Dry beach length pre-warning of tailings dam based on Bayesian decision [J]. China Safety Science Journal, 2022, 32(S1): 120-126. |
[3] | ZENG Jihan, ZHANG Guang, WU Hao, HU Shaohua. Determination method of comprehensive early-warning indexes for tailings dam based on improved POT model [J]. China Safety Science Journal, 2022, 32(5): 134-139. |
[4] | JIANG Shuihua, ZENG Shaohui, HUANG Jinsong, YAO Chi. Sequential probabilistic back analysis on hydraulic conductivity of tailings materials [J]. China Safety Science Journal, 2020, 30(6): 158-165. |
[5] | WU Ligong, XIAO Lixing, LIU Xiaofeng, YAO Chi, JIANG Qinghui, ZHOU Chuangbing. Influence of particle size on overtopping dam break of tailings dam [J]. China Safety Science Journal, 2020, 30(4): 160-165. |
[6] | DAI Jianfei, YANG Peng, ZHU Liyi, GUO Pan, GUAN Huaiguang. A PCA-LSTM neural network-integrated method for phreatic line prediction [J]. China Safety Science Journal, 2020, 30(3): 94-101. |
[7] | XIONG Ruoxin, SONG Yuanbin, WANG Yuxuan, DUAN Yanjuan. Application of convolutional neural network-based 3D posture estimation in behavioral analysis of construction workers [J]. China Safety Science Journal, 2019, 29(7): 64-69. |
[8] | XU Dan, DAI Yong, JI Junhong. Research on driver behavior recognition method based on convolutional neural network [J]. China Safety Science Journal, 2019, 29(10): 12-17. |
[9] | ZHANG Yuanyuan, YANG Kai. Research on evolution of risk of tailings dam-break in lifecycle [J]. China Safety Science Journal, 2017, 27(7): 1-6. |
[10] | DU Yanqiang , WANG Xinwu , ZHANG Kun , WANG Xiaoqiang , YANG Chunhe. Process and mechanism of fine grained tailings dam's failure due to overtopping [J]. China Safety Science Journal, 2017, 27(2): 104-108. |
[11] | . Buffering Effect of Landslide Dam on Debris Flow Surging from Tailings Dam-break [J]. China Safety Science Journal, 2013, 23(6): 98-. |
[12] | . Sensibility Analysis of Saturation Line Depth to Tailings Dam Stability with Index Satisfaction Degree [J]. China Safety Science Journal, 2013, 23(10): 93-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||