China Safety Science Journal ›› 2023, Vol. 33 ›› Issue (S1): 263-269.doi: 10.16265/j.cnki.issn1003-3033.2023.S1.0070
• Public safety • Previous Articles Next Articles
WANG Yaohan(), SONG Zeyang**(
), ZHANG Lidong
Received:
2023-02-14
Revised:
2023-04-08
Online:
2023-06-30
Published:
2023-12-31
Contact:
SONG Zeyang
WANG Yaohan, SONG Zeyang, ZHANG Lidong. Research on safety sign classification based on CNN[J]. China Safety Science Journal, 2023, 33(S1): 263-269.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2023.S1.0070
Tab.1
Number of 17 kinds of safety signs before and after augmentation
大类 | 类别 | 备注 | 数量 | 增强后数量 |
---|---|---|---|---|
禁止类 | 禁止吸烟 | A | 46 | 260 |
禁止类 | 禁止攀登 | B | 54 | 303 |
禁止类 | 禁止烟火 | C | 49 | 268 |
禁止类 | 禁止入内 | D | 55 | 308 |
警告类 | 当心触电 | E | 37 | 314 |
警告类 | 注意安全 | F | 45 | 298 |
警告类 | 当心机械伤人 | G | 45 | 254 |
警告类 | 当心中毒 | H | 46 | 269 |
警告类 | 当心坠落 | I | 52 | 274 |
警告类 | 当心滑倒 | J | 39 | 271 |
指令类 | 必须佩戴安全帽 | K | 69 | 255 |
指令类 | 必须戴防护手套 | L | 38 | 259 |
指令类 | 必须穿防护服 | M | 40 | 278 |
指令类 | 必须佩戴防毒面具 | N | 50 | 287 |
指令类 | 必须佩戴防尘口罩 | O | 35 | 256 |
提示类 | 应急避难场所 | P | 45 | 258 |
提示类 | 紧急出口 | Q | 71 | 296 |
总计 | 816 | 4 708 |
[1] |
|
[2] |
|
[3] |
|
[4] |
doi: 10.1016/j.compind.2018.03.037 |
[5] |
|
[6] |
张建明, 王伟, 陆朝铨, 等. 基于压缩卷积神经网络的交通标志分类算法[J]. 华中科技大学学报:自然科学版, 2019, 47(1): 103-108.
|
|
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
汪洋, 王俊刚. 基于深度学习算法的铁路列车运行安全检测[J]. 中国安全科学学报, 2018, 28(增2): 41-45.
|
doi: 10.16265/j.cnki.issn1003-3033.2018.S2.008 |
|
[12] |
|
[13] |
doi: 10.1016/j.proeng.2017.08.022 |
[14] |
|
[15] |
|
[16] |
doi: 10.1109/TITS.2012.2208909 |
[17] |
|
[18] |
梅莹, 尹艺璐, 石称华, 等. 基于改进 VGG 卷积神经网络的叶菜霜霉病智能识别算法研究[J]. 上海蔬菜, 2021(6): 76-84.
|
|
|
[19] |
|
[20] |
|
[21] |
孙志琳. 基于深度学习的行人再识别研究[D]. 太原: 山西大学, 2019.
|
|
|
[22] |
张建华, 孔繁涛, 吴建寨, 等. 基于改进 VGG 卷积神经网络的棉花病害识别模型[J]. 中国农业大学学报, 2018, 23(11): 161-171.
|
|
|
[23] |
doi: 10.1016/j.patrec.2017.04.017 |
[24] |
周云成, 许童羽, 郑伟, 等. 基于深度卷积神经网络的番茄主要器官分类识别方法[J]. 农业工程学报, 2017, 33(15): 219-226.
|
|
|
[25] |
doi: 10.1016/j.jvcir.2016.03.019 |
[1] | ZHANG Shulin, ZHANG Ya'nan, TIAN Chao, YAN Xiang, LU Yi, SHI Shiliang. Study on flame image recognition of chemical industrial park fires based on convolutional neural network [J]. China Safety Science Journal, 2024, 34(1): 179-186. |
[2] | LI Hua, WU Lizhou, XUE Xicheng, ZHONG Xingrun. Computer vision based safety inspection of high abutting edges [J]. China Safety Science Journal, 2023, 33(9): 69-75. |
[3] | ZHAO Jiangping, LIU Xingxing, ZHANG Xiangzhuo. Research on image recognition technology for external scaffold hidden danger based on improved YOLOv5s [J]. China Safety Science Journal, 2023, 33(12): 60-66. |
[4] | WEN Tingxin, WANG Guitong, KONG Xiangbo, LIU Mengxiao, BO Jingkai. Identification of miners' unsafe behaviors based on transfer learning and residual network [J]. China Safety Science Journal, 2020, 30(3): 41-46. |
[5] | MA Yuchun, ZHOU Jincao. Study on improving vehicle longitudinal safety based on vision revision and projection reversion technique [J]. China Safety Science Journal, 2018, 28(6): 79-84. |
[6] | YIN Zhongkai, SHI Fengran, LI Naiwen, NIU Lixia. Effects of safety cues on inhibition of attention return of miners different in degree of burnout [J]. China Safety Science Journal, 2017, 27(9): 33-38. |
[7] | . Study on Effectiveness of Safety Sign Recognition Training and Different Training Methods [J]. China Safety Science Journal, 2013, 23(7): 127-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||