China Safety Science Journal ›› 2026, Vol. 36 ›› Issue (1): 72-80.doi: 10.16265/j.cnki.issn1003-3033.2026.01.0911
• Safety Technology and Engineering • Previous Articles Next Articles
WU Shengnan1,2(
), ZHANG Laibin1,2, HU Yiming1,2,3, CUI Rong1,2, LIU Shujie4, YIN Zhiming5
Received:2025-08-14
Revised:2025-10-20
Online:2026-01-28
Published:2026-07-28
CLC Number:
WU Shengnan, ZHANG Laibin, HU Yiming, CUI Rong, LIU Shujie, YIN Zhiming. A multi-class intelligent identification model for kick risk[J]. China Safety Science Journal, 2026, 36(1): 72-80.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2026.01.0911
Table 3
Information of the selected data
| 数据序号 | 时间范围 | 井筒深度/m | 钻头深度/m | 工况 |
|---|---|---|---|---|
| 1—714 | 8:54:15—9:53:40 | 3 995.29~4 002.43 | 3 995.29~4 002.43 | 纯钻进 |
| 715—868 | 9:53:45—10:06:30 | 4 002.43 | 3 992.93~4 002.43 | 划眼 |
| 869—976 | 10:06:35—10:15:30 | 4 002.43~4 003.45 | 4 002.43~4 003.45 | 纯钻进 |
| 977—1 003 | 10:15:35—10:17:45 | 4 003.45 | 4 002.78~4 003.45 | 划眼 |
| 1 004—2 678 | 10:17:50—12:37:20 | 4 003.45~4 023.55 | 4 003.45~4 023.55 | 纯钻进 |
| 2 679—3 825 | 12:37:25—14:12:55 | 4 023.55 | 3 994.31~4 023.55 | 划眼(其间溢流) |
| 3 826—5 839 | 14:13:00—17:00:55 | 4 023.55 | 4 020.93~4 021.41 | 循环(其间溢流) |
Table 6
Summary of identification results %
| 数据集 | 准确率 | IELM | ELM | BP | SVM |
|---|---|---|---|---|---|
| 数据 训练 集A1 | 低风险 | 99.64 | 81.58 | 92.57 | 98.49 |
| 中风险 | 96.89 | 92.81 | 92.67 | 96.11 | |
| 高风险 | 87.63 | 0 | 24.73 | 89.49 | |
| 整体 | 97.16 | 79.81 | 86.44 | 96.48 | |
| 数据 测试 集A2 | 低风险 | 99.01 | 82.79 | 92.10 | 95.03 |
| 中风险 | 96.03 | 92.53 | 92.30 | 91.32 | |
| 高风险 | 82.5 | 0 | 23.75 | 72.67 | |
| 整体 | 96.01 | 80.14 | 85.96 | 91.10 | |
| F1分数 | 93.01 | — | 71.47 | 87.03 |
| [1] |
doi: 10.1016/S1876-3804(20)60060-X |
| [2] |
李玉飞, 张博, 孙伟峰. 基于SVM和D-S证据理论的早期溢流智能识别方法[J]. 钻采工艺, 2020, 43(5):27-30,6.
doi: 10.3969/J. ISSN.1006-768X.2020.05.08 |
|
|
|
| [3] |
邴磊. 基于Attention-GRU算法早期溢流识别预警方法[J]. 海洋石油, 2025, 45(2):76-82.
|
|
|
|
| [4] |
张禾, 池紫欣. 基于BSMOTE-SVM算法的溢流风险评价[J]. 控制工程, 2023, 30(12): 2173-2178.
|
|
|
|
| [5] |
|
| [6] |
陈青, 黄志强, 孔祥伟, 等. 基于多录井参数特征同步的溢流事故监测研究[J]. 应用数学和力学, 2025, 46(2): 241-53.
|
|
|
|
| [7] |
|
| [8] |
史肖燕, 周英操, 赵莉萍, 等. 基于随机森林的溢漏实时判断方法研究[J]. 钻采工艺, 2020, 43(1): 9-12,7.
doi: 10.3969/J. ISSN.1006-768X.2020.01.03 |
|
|
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
陈贵波, 刘东升, 李加卫, 等. 基于时间和通道融合的多变量时间序列异常检测[J/OL]. 计算机应用与软件:1-13.[2025-09-01]. https://link.cnki.net/urlid/31.1260.TP.20250919.1739.004.
|
|
|
|
| [13] |
doi: 10.1016/j.petrol.2019.04.016 |
| [14] |
杨向前, 张苹茹, 武胜男, 等. 基于数据模型协作的海上钻井溢流早期预测预警[J]. 中国安全科学学报, 2024, 34(4): 93-100.
doi: 10.16265/j.cnki.issn1003-3033.2024.04.1390 |
|
|
|
| [15] |
葛亮, 滕怡, 肖国清, 等. 基于井下环空参数的溢流智能预警技术研究[J]. 西南石油大学学报:自然科学版, 2023, 45(2): 126-134.
|
|
|
|
| [16] |
李开荣, 陈俊男, 段丽娟, 等. 钻井液池体积精准监测装置的研制与应用[J]. 录井工程, 2022, 33(4):92-96.
doi: 10.3969/j.issn.1672-9803.2022.04.015 |
|
doi: 10.3969/j.issn.1672-9803.2022.04.015 |
|
| [17] |
张继德, 张永刚, 韩国生, 等. 钻井液录井参数在钻井工程异常预报中的应用[J]. 录井工程, 2010, 21(3): 39-44,76-77.
|
|
|
|
| [18] |
doi: 10.1016/j.psep.2020.05.046 |
| [19] |
|
| [20] |
|
| [21] |
|
| [1] | WU Zhenkun, PENG Min, ZHU Guoqing, LIU Lu, QIN Dongzi. Study on prediction of temperature characteristic parameters for subway train with multiple lateral openings and tnnnels [J]. China Safety Science Journal, 2026, 36(1): 130-137. |
| [2] | CAI Boyuan, YU Zhengxing, REN Yi, ZHANG Yihai, MA Haitao, WANG Yidan. Surface deformation prediction of open-pit mine slopes based on CNN-LSTM model [J]. China Safety Science Journal, 2025, 35(S2): 231-238. |
| [3] | WANG Yizhao, BAI Wenfeng, HE Qinglun, WANG Fei, CHEN Long, HE Sen. A methodology for road collapse risk assessment based on data augmentation [J]. China Safety Science Journal, 2025, 35(S1): 234-238. |
| [4] | QU Yefeng, GU Rutong, HUANG Wenqiang, CHEN Dongling, DENG Liming. Risk identification method for notice to airmen based on natural language processing [J]. China Safety Science Journal, 2025, 35(S1): 33-39. |
| [5] | MENG Guangxiong. Research on fire source visual recognition method based on multi-feature fusion [J]. China Safety Science Journal, 2025, 35(S1): 40-46. |
| [6] | HU Qiuping, MA Zhi, WANG Jianmin, JIANG Jianmin. Parameter inversion of subsidence prediction model using probability integration method based on deep neural network [J]. China Safety Science Journal, 2025, 35(S1): 99-106. |
| [7] | YU Zhenjiang. Efficacy evaluation of fire communication command system based on IPSO-BP [J]. China Safety Science Journal, 2025, 35(9): 1-7. |
| [8] | CHEN Tiehua, LIU Ruikang, LI Hongxia. Modeling and simulation research of miners' work safety responsibility pressure evolution based on SD-BPNN method [J]. China Safety Science Journal, 2025, 35(9): 70-77. |
| [9] | LYU Shuran, TIAN Jiangxue, DANG Xinyu. Fire prediction in urban villages based on improved grey wolf optimized BP network [J]. China Safety Science Journal, 2025, 35(8): 196-204. |
| [10] | CAO Yanxi, MA Hongyan, WANG Shun. Fire temperature field prediction in commercial buildings based on FDS [J]. China Safety Science Journal, 2025, 35(8): 213-218. |
| [11] | CHEN Jianfeng, ZHAO Jiahong, LIU Siyu. Optimization of urban medical waste transportation network based on four-dimensional risk prediction [J]. China Safety Science Journal, 2025, 35(4): 152-157. |
| [12] | ZHANG Miao, WANG Xiaojun, LEI Jingfa, ZHAO Ruhai, LI Yongling. Lightweight neural network combined with depth camera for miner target detection and localization [J]. China Safety Science Journal, 2025, 35(3): 115-124. |
| [13] | XU Hui, YE Zehong, ZHOU Qilin, ZHANG Rifen. Resilient prediction and dynamic spatial differentiation of core Chinese mainland cities [J]. China Safety Science Journal, 2025, 35(3): 179-186. |
| [14] | WANG Chunyuan, LIU Quanjie. Research on tunnel fire detection based on improved YOLOv8s model [J]. China Safety Science Journal, 2025, 35(3): 69-76. |
| [15] | WANG Wei, CUI Xinchao, QI Yun, LI Xuping, WANG Huangrui, QI Qingjie. Improving SSA and optimizing BPNN for coal gas permeability prediction model [J]. China Safety Science Journal, 2025, 35(2): 137-143. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||