中国安全科学学报 ›› 2021, Vol. 31 ›› Issue (12): 10-16.doi: 10.16265/j.cnki.issn 1003-3033.2021.12.002

• 安全社会科学与安全管理 • 上一篇    下一篇

知识图谱改进的施工行为安全风险与危险位置识别算法*

龙丹冰1 讲师, 魏君豪1, 杨成**2 副教授   

  1. 1 西南交通大学 土木工程学院,四川 成都 610031;
    2 西南交通大学 陆地交通地质灾害防治技术国家工程实验室,四川 成都 610031
  • 收稿日期:2021-09-13 修回日期:2021-11-09 出版日期:2021-12-28
  • 作者简介:龙丹冰 (1983—),女,广西柳州人,博士,讲师,主要从事建筑信息化研究。E-mail: lornalong@swjtu.edu.cn。
  • 基金资助:
    国家自然科学基金资助(51808455,51778537);国家重点研发计划项目(2021YFB2600501);四川省科技计划项目(2017JY0237);中央高校基本科研业务费-专题研究项目(基础办)-学科交叉研究专项(2682021ZTPY080)。

An improved algorithm for construction behavior safety risk and hazard location identification based on knowledge graph

LONG Danbing1, WEI Junhao1, YANG Cheng2   

  1. 1 School of Civil Engineering, Southwest Jiaotong University, Chengdu Sichuan 610031, China;
    2 National Engineering Laboratory for Technology Geological Disaster Prevention in Land Transportation, Southwest Jiaotong University, Chengdu Sichuan 610031, China
  • Received:2021-09-13 Revised:2021-11-09 Published:2021-12-28

摘要: 为解决传统施工行为安全风险分析中因专家主观判断而不能较好反映项目或地区特征的问题,提出知识图谱改进的施工行为安全风险分析方法与危险位置识别算法。首先,基于施工安全事故报告客观数据,建立可结构化存储与调用数据并支持推理的施工安全事故知识图谱;然后,在图谱中提取因施工行为导致的安全事故数据,修正初始由专家定义的风险等级可能度函数,进而改进基于灰聚类的施工行为安全风险分析方法;最后,提出知识图谱路径推理算法,基于风险分析结果明确关键行为指标后,确定关键危险位置;施工案例采用近年项目所在地区同类型的施工安全事故报告建立知识图谱,进行施工行为安全风险评价与危险位置识别,验证结果表明:该方法可实现动态、全局的施工行为安全风险定级,反映风险的地区和时段特征,辅助改进施工安全措施计划。

关键词: 知识图谱, 施工行为安全, 安全风险分析, 危险位置识别, 安全事故报告

Abstract: In order to address insufficiency of traditional construction behavior risk analysis in reflecting problems in projects and regions due to subjective judgement of experts, a knowledge graph method was proposed in this article for improving construction behavior-based safety risk analysis and hazardous location identification. Firstly, based on objective data report of construction accidents, an accident knowledge graph was built to store and recall data efficiently as well as support reasoning. Then, accident data deriving from construction behavior was extracted from the graph to modify possibility degree function of risk grading initially defined by experts, and the method based on gray clustering for risk analysis of construction behavior was improved. Finally, path reasoning algorithm over the knowledge graph was formed to identify relevant hazardous location corresponding to construction behavior indicators. After key behavior indicators were determined based on risk analysis results. Furthermore, a knowledge graph was developed through a case study on the same type of recent construction accident reports in the region where the project was located, the behavior-based safety risk analysis and hazardous location identification were carried out. The results show that the proposed method can determine accident level dynamically and comprehensively, and reflect risk location and timing characteristics, thus helping improve construction safety measures.

Key words: knowledge graph, construction behavior safety, risk analysis, hazardous location identification, accident reports

中图分类号: