中国安全科学学报 ›› 2023, Vol. 33 ›› Issue (10): 147-159.doi: 10.16265/j.cnki.issn1003-3033.2023.10.2088

• 安全工程技术 • 上一篇    下一篇

基于知识图谱的火灾图像识别研究

李海1,2(), 孙鹏3   

  1. 1 中国民用航空飞行学院 民航安全工程学院,四川 广汉 618307
    2 中国民用航空飞行学院 民机火灾科学与安全工程四川省重点实验室,四川 广汉 618307
    3 中国刑事警察学院 公安信息技术与情报学院,辽宁 沈阳 110036
  • 收稿日期:2023-04-20 修回日期:2023-07-28 出版日期:2023-11-24
  • 作者简介:

    李海 (1989—),男,甘肃定西人,博士研究生,讲师,研究方向为机器视觉与图像处理。E-mail:

    孙鹏 教授

  • 基金资助:
    民机火灾科学与安全工程四川省重点实验室自主项目(MZ2022JB03); 中央高校基本科研业务费专项资金资助(J2023-062); 中央高校基本科研业务费专项资金资助(GJ2023-051)

Research on fire image recognition based on scientific knowledge graph

LI Hai1,2(), SUN Peng3   

  1. 1 Civil Aviation Flight University of China, College of Civil Aviation safety Engineering, Guanghan Sichuan 618307, China
    2 Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province,Civil Aviation Flight University of China,Guanghan Sichuan 618307, China
    3 Criminal Investigation Police University of China, School of Public Security Information Technology, Shenyang Liaoning 110036, China
  • Received:2023-04-20 Revised:2023-07-28 Published:2023-11-24

摘要:

为了全面分析图像型火灾识别技术的发展趋势和研究动态,更准确地为火灾探测领域科研工作提供研究方向,运用Web of Science已有文献数据和科学知识图谱软件以及Python-matplotlib库,定量分析国际火灾图像研究的发文时间、发文作者、发文机构、高被引文献等特征,从主题、关键词、摘要入手分析当前研究热点与前沿趋势动态。结果表明:国际火灾图像识别研究成果数量整体上呈现出波浪式上升趋势;欧美国家在火灾图像识别领域的研究较为深入,而中国在该领域研究起步较晚;J Comp Neurol、Remote Sens Environ、Fire Safety J、J Geophys Res-Atmos为代表期刊形成共被引期刊合作网络;研究热点主要表现在火灾图像识别的深度学习模型、森林火灾图像及火灾影响、火灾遥感图像识别算法3个方面;研究前沿主要表现在基于深度学习的火灾烟雾探测,火烧迹地的森林植被覆盖与流失,煤矿、工业热源、电动汽车的火灾探测,阻燃性4个方面。

关键词: 火灾探测, 火灾图像识别, 知识图谱, 研究热点, 深度学习

Abstract:

In order to comprehensively analyze the development trend and research trends of image-based fire identification technology, and more accurately provide research direction for scientific research in the field of fire detection, the Web of Science existing literature data and scientific knowledge mapping software, Python-maplotlib library, etc., were used to quantitatively analyze the characteristics of international fire image research, such as the time of publication, the author, the organisation, and the highly cited articles. This paper started with an analysis of current research hotspots and frontier trends. The results show that the number of international fire image recognition research achievements shows a wavy upward trend. The research on fire image and its related fields in Europe and America is relatively deep, while that in China is relatively late. J Comp Neurol, Remote Sens Environment, Fire Safety J, J Geophys Res Atmos are representative journals that form a cooperative network of co-cited journals. The research focuses mainly on the deep learning model of fire image recognition, forest fire image and fire impact, and fire remote sensing image recognition algorithm. The research frontiers are mainly shown in four aspects: fire smoke detection based on deep learning, forest vegetation coverage and loss of burned areas, fire detection of coal mines, industrial heat sources, electric vehicles, and flame retardancy.

Key words: fire detection, fire images recognition, scientific knowledge graph, research hotspots, deep learning