[1] |
FANG Weili, LOVE P E D, LUO Hanbin, et al. Computer vision for behaviour-based safety in construction: a review and future directions[J]. Advanced Engineering Informatics, 2020, 43:DOI: 10.1016/j.aei.2019.100980.
doi: 10.1016/j.aei.2019.100980
|
[2] |
RECARTE M Á, PÉREZ E, CONCHILLO Á, et al. Mental workload and visual impairment: differences between pupil, blink, and subjective rating[J]. The Spanish Journal of Psychology, 2008, 11(2):374-385.
doi: 10.1017/S1138741600004406
|
[3] |
张巧丽, 赵地, 迟学斌. 基于深度学习的医学影像诊断综述[J]. 计算机科学, 2017, 44(增2):1-7.
|
|
ZHANG Qiaoli, ZHAO Di, CHI Xuebin. Review for deep learning based on medical imaging diagnosis[J]. Computer Science, 2017, 44(S2):1-7.
|
[4] |
TIAN Hongkun, WANG Tianhai, LIU Yadong, et al. Computer vision technology in agricultural automation-a review[J]. Information Processing in Agriculture, 2019, 7(1):1-19.
doi: 10.1016/j.inpa.2019.09.006
|
[5] |
佟瑞鹏, 张艳伟. 人工智能技术在矿工不安全行为识别中的融合应用[J]. 中国安全科学学报, 2019, 29(1):7-12.
doi: 10.16265/j.cnki.issn1003-3033.2019.01.002
|
|
TONG Ruipeng, ZHANG Yanwei. Integration between artificial intelligence technologies for miners' unsafe behavior identification[J]. China Safety Science Journal, 2019, 29(1):7-12.
doi: 10.16265/j.cnki.issn1003-3033.2019.01.002
|
[6] |
YU Yantao, GUO Hongling, DING Qinghua, et al. An experimental study of real-time identification of construction workers' unsafe behaviors[J]. Automation in Construction, 2017, 82:193-206.
doi: 10.1016/j.autcon.2017.05.002
|
[7] |
温廷新, 王贵通, 孔祥博, 等. 基于迁移学习与残差网络的矿工不安全行为识别[J]. 中国安全科学学报, 2020, 30(3):41-46.
doi: 10.16265/j.cnki.issn1003-3033.2020.03.007
|
|
WEN Tingxin, WANG Guitong, KONG Xiangbo, et al. Identification of miners' unsafe behaviors based on transfer learning and residual network[J]. China Safety Science Journal, 2020, 30(3):41-46.
doi: 10.16265/j.cnki.issn1003-3033.2020.03.007
|
[8] |
FANG Weili, DING Lieyun, LUO Hanbin, et al. Falls from heights: a computer vision-based approach for safety harness detection[J]. Automation in Construction, 2018, 91:53-61.
doi: 10.1016/j.autcon.2018.02.018
|
[9] |
SEO J O, HAN S U, LEE S H, et al. Computer vision techniques for construction safety and health monitoring[J]. Advanced Engineering Informatics, 2015, 29(2):239-251.
doi: 10.1016/j.aei.2015.02.001
|
[10] |
FANG Qi, LI Heng, LUO Xiaochun, et al. A deep learning-based method for detecting non-certified work on construction sites[J]. Advanced Engineering Informatics, 2018, 35:56-68.
doi: 10.1016/j.aei.2018.01.001
|
[11] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]. Advances in Neural Information Processing Systems, 2012:1097-1105.
|
[12] |
UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2):154-171.
doi: 10.1007/s11263-013-0620-5
|
[13] |
GIRSHICK R. Fast R-CNN[C]. Proceedings of the IEEE International Conference on Computer Vision, 2015:1440-1448.
|
[14] |
REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards teal-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
doi: 10.1109/TPAMI.2016.2577031
pmid: 27295650
|
[15] |
SEVAKULA R K, SINGH V, VERMA N K, et al. Transfer learning for molecular cancer classification using deep neural networks[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 16(6):2089-2100.
doi: 10.1109/TCBB.2018.2822803
|
[16] |
MA Cheng, JIANG Zhenyu, RAO Yaogming, et al. Deep face super-resolution with iterative collaboration between attentive recovery and landmark estimation[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020:5569-5578.
|
[17] |
WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11 531-11 539.
|
[18] |
JIANG Zhenyu. Deep iterative collaboration for face super-resolution[EB/OL]. [2022-05-25]. https://github.com/Maclory/Deep-Iterative-Collaboration.
|