中国安全科学学报 ›› 2022, Vol. 32 ›› Issue (4): 177-184.doi: 10.16265/j.cnki.issn1003-3033.2022.04.026

• 防灾减灾技术与工程 • 上一篇    下一篇

SAR影像洪水淹没范围深度学习提取方法

郭玮1,2(), 袁宏永2, 薛明1, 魏平岩1   

  1. 1 应急管理部大数据中心,北京 100010
    2 清华大学 工程物理系,北京 100084
  • 收稿日期:2021-12-15 修回日期:2022-03-17 出版日期:2022-04-28
  • 作者简介:

    郭玮 (1986—),男,河北保定人,博士,工程师,主要从事自然灾害遥感监测、人群疏散、公共安全等方面的工作。E-mail:

    袁宏永, 教授。

    薛明, 高级工程师。

    魏平岩, 高级工程师。

  • 基金资助:
    国家重点研发计划项目(2018YFC0807000)

Flood inundation area extraction method of SAR images based on deep learning

GUO Wei1,2(), YUAN Hongyong2, XUE Ming1, WEI Pingyan1   

  1. 1 Big Data Center of Ministry of Emergency Management, Beijing 100010, China
    2 Department of Engineering Physics, Tsinghua University, Beijing 100084, China
  • Received:2021-12-15 Revised:2022-03-17 Published:2022-04-28

摘要:

为提高洪涝灾害应急救援辅助决策能力,快速提取洪水淹没范围,提出一种基于深度学习的合成孔径雷达(SAR)影像洪水淹没范围提取方法。首先,基于DeepLab v3+模型,建立合成孔径雷达(SAR)影像洪水淹没范围提取模型;然后,针对SAR影像标注数据获取困难的问题,提出一种基于光学影像水体指数的半自动化标注样本制作方法,该方法大幅度减少标注工作的人工量和所需时间;最后,采用Sentinel-1卫星影像验证洪水淹没范围提取模型准确度。结果表明:提出的洪水淹没范围提取模型对复杂地表适应性较强;相比于自适应阈值方法,其识别精度更高,对遥感影像中的水体边缘、小面积水体、细长线状水体识别效果更优,该模型平均交并比为0.83。

关键词: 合成孔径雷达(SAR), 洪水淹没范围, 深度学习, DeepLab v3+模型, 水体提取

Abstract:

In order to improve decision-making ability for flood disaster emergency rescue and quickly extract flood inundation areas, an extraction method of SAR images based on deep learning was proposed. Firstly, flood inundation area extraction model of SAR images was established based on DeepLab v3+ model. Then, considering difficulty in obtaining labeled samples of SAR images, a semi-automatic sample making method based on optical image water index was proposed, which greatly reduced the labor and time required for annotation. Lastly, Sentinel-1 images were used for experimental analysis to verify the model's accuracy. The results show that the proposed extraction model has strong adaptability to complex surfaces. Compared with the adaptive threshold method, it features higher recognition accuracy, and better recognition effect of water edge, small area water body and thin and long linear water body in remote sensing image, with an mean Intersection over Union of 0.83.

Key words: synthetic aperture radar (SAR), flood inundation area, deep learning, DeepLab v3+ model, water extraction