[1] MACQUEEN J. Some methods for classification and analysis of multivariate observations[C]. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics & Probability, 1965:281-297. [2] WELLS K, BRADLEY D A. A review of X-ray explosives detection techniques for checked baggage[J]. Applied Radiation & Isotopes, 2012, 70(8): 1 729-1 746. [3] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M].Cambridge: The MIT Press, 2016:68-95. [4] 朱海港.基于深度学习的高清航拍图像目标检测[D].北京:中国科学院大学,2015. ZHU Haigang. Research on high resolution aerial objection based on deep learning[D]. Beijing: University of Chinese Academy of Sciences, 2015. [5] 黄峰,徐悦竹.图像识别技术在铁路设备故障检测中的应用[J].信息技术,2013(7):147-149. HUANG Feng, XU Yuezhu. Image recognition technology in the railway equipment fault detection[J].Information Technology, 2013(7): 147-149. [6] 佟瑞鹏,陈策,崔鹏程,等.基于深度学习的施工安全泛场景数据获取方法[J].中国安全科学学报,2017,27(5):1-6. TONG Ruipeng, CHEN Ce, CUI Pengcheng, et al. Deep learning method for processing pan-scene data on construction safety[J]. China Safety Science Journal, 2017, 27(5): 1-6. [7] KRIZHEVSKY A. Convolutional deep belief networks on CIFAR-10[J]. Communications of the Acm, 2010, 54(10):95-103. [8] BURGES C J C. From ranknet to lambdarank to lambdamart: an overview[J]. Learning, 2010, 11: 23-41. [9] YAN J, XU N Y, CAI X F, et al. An FPGA-based accelerator for LambdaRank in Web search engines[J]. Acm Transactions on Reconfigurable Technology & Systems, 2011, 4(3): 2 658-2 674. [10] 张瑜,罗可.基于OC-SVM的大型数据集分类方法[J].计算机工程与应用,2011,47(4):131-133. ZHANG Yu, LUO Ke. OC-SVM-based classification for large-scale data sets[J]. Computer Engineering & Applications, 2011,47(4): 131-133. [11] GRAY C, BEATTIE M, BELAY H, et al. Personalized online search for fashion products[C]. Systems and Information Engineering Design Symposium (SIEDS), 2015. IEEE, 2015:91-96. |