中国安全科学学报 ›› 2024, Vol. 34 ›› Issue (1): 106-115.doi: 10.16265/j.cnki.issn1003-3033.2024.01.0435

• 安全工程技术 • 上一篇    下一篇

400 km/h高速列车过隧道时列车风特性研究

熊小慧1,2,3(), 张朵朵1,2,3, 耿语堂1,2,3, 杨波1,2,3, 唐明赞1,2,3, 陈光1,2,3   

  1. 1 中南大学 轨道交通安全教育部重点实验室, 湖南 长沙 410075
    2 中南大学 轨道交通安全关键技术国际合作联合实验室, 湖南 长沙 410075
    3 中南大学 轨道交通列车安全保障技术国家地方联合工程研究中心, 湖南 长沙 410075
  • 收稿日期:2023-08-18 修回日期:2023-11-20 出版日期:2024-01-28
  • 作者简介:

    熊小慧 (1978—),男,湖北天门人,博士,教授,主要从事轮轨和磁浮列车空气动力学数值仿真及试验、轨道交通行车安全等方面的研究。E-mail:

    陈光,讲师

  • 基金资助:
    国家重点研发项目(2020YFA071903-1); 湖南省自然科学基金资助(2021JJ30849); 中国国家铁路集团有限公司科技研究开发计划项目(P2021T013)

Study on slipstream characteristics of 400 km/h high-speed trains passing through tunnels

XIONG Xiaohui1,2,3(), ZHANG Duoduo1,2,3, GENG Yutang1,2,3, YANG Bo1,2,3, TANG Mingzan1,2,3, CHEN Guang1,2,3   

  1. 1 Key Laboratory of Traffic Safety on Track of Ministry of Education, Central South University,Changsha Hunan 410075, China
    2 Joint International Research Laboratory of Key Technology for Rail Traffic Safety, Central South University, Changsha Hunan 410075, China
    3 National and Local Joint Engineering Research Center of Safety Technology for Rail Vehicle, Central South University, Changsha Hunan 410075, China
  • Received:2023-08-18 Revised:2023-11-20 Published:2024-01-28

摘要:

为探明400 km/h高速列车在隧道内运行时的列车风特性,采用三维、非定常、可压缩和可实现的k-ε湍流模型进行数值模拟计算,分析隧道内列车风时域演变特征和空间分布特征,并按照列车各部分到达和驶离测点的时间对车体周围流场进行分区,采用5个特征参数衡量各区域内列车风速度的变化,探讨列车编组长度和隧道长度对列车风的影响。研究结果表明:隧道内列车风时域变化特征受列车运行位置和隧道内压力波传播的显著影响;列车风正峰值会随着列车编组长度、列车速度的增大而增加,且峰值到达时刻分别延后和提前,8车编组对应的列车风正峰值相较于 3车编组时增加68.75%,400 km/h时的列车风正峰值相较于300 km/h时增加22.65%;同种隧道长度下的列车风速度最大正峰值出现在隧道中点位置处,且此处的波动更为剧烈复杂,主要是压缩波和膨胀波叠加得更加频繁。长隧道内压力波系叠加对列车风速度峰值的影响减弱,当隧道长度达到 3 km 时,列车风正峰值相较于1 km长度时下降30.70%。

关键词: 高速列车, 400km/h高速铁路, 隧道, 列车风, 数值模拟

Abstract:

To explore the slipstream characteristics of 400 km/h high-speed trains passing through tunnels, a three-dimensional, unsteady, compressible and realizable k-ε turbulence model was used to perform numerical simulations to analyze the time evolution and spatial distributions of slipstream in tunnels. In addition, the flow field around the train was zoned according to the times when each part of the train reached and left the measuring point. Five characteristic parameters were used to measure the change of the slipstream speed in each area. The influence of different train formation lengths and tunnel lengths was discussed. The research results show that the change characteristics of slipstream in the tunnel are significantly affected by the train running position and pressure wave propagation. The slipstream peak increases with the increase of train formation length and speed, and the peak arrival time is delayed and advanced. The positive peak value of 8 formation is 68.75% higher than that of 3 formation, and the peak value at 400 km/h is 22.65% higher than that of 300 km/h. Under the same tunnel length, the maximum positive peak slipstream appears at the midpoint of the tunnel, and the fluctuations here are more intense and complex. The influence of pressure wave in the long tunnel on the peak slipstream speed is weakened. When the tunnel length reaches 3km, the positive peak slipstream drops by 30.70% compared with the length of 1km.

Key words: high-speed train, 400km/h high-speed railway, tunnel, slipstream, numerical simulation

中图分类号: