[1] |
刁俊武, 乔志强. 炼化企业生产智能化规划与实施路径[J]. 智能制造, 2021(3):66-69,74.
|
[2] |
FIROOZSHAHI A, KIM S. Intelligent and innovative monitoring of water treatment plant in large gas refinery[C]. 2010 IEEE International Conference on Control Applications, 2010:269-273.
|
[3] |
BRAGATTO P, ANSALDI S M, MENNUTI C. Improving safety of process plants, through smart systems for critical equipment monitoring[J]. Chemical Engineering Transactions (CET Journal), 2018, 67: 49-54.
|
[4] |
李永帅, 陈庚晓. 控制阀智能诊断功能在炼化企业中的应用[J]. 仪器仪表用户, 2021, 28(7): 46-48, 34.
|
|
LI Yongshuai, CHEN Gengxiao. Application of intelligent diagnosis function of control valve in refining and chemical enterprises[J]. Instrumentation, 2021, 28(7): 46-48, 34.
|
[5] |
石凤勇, 党晓峰, 于彦明, 等. 智能模拟工厂技术在炼化装置建设阶段的应用[J]. 石油化工自动化, 2018, 54(2): 6-10.
|
|
SHI Fengyong, DANG Xiaofeng, YU Yanming, et al. Application of intelligent simulated factory technology in the construction stage of refining and chemical plants[J]. Automation in Petro-Chemical Industry, 2018, 54(2): 6-10.
|
[6] |
西门子(中国)有限公司. 西门子阀门状态监测 App助力中石化青岛炼化打造智能工厂[J]. 自动化博览, 2021, 38(12): 16-17.
|
[7] |
郭鹏. 如何有效开展风险识别和控制[J]. 中国安全生产科学技术, 2009, 5(增1):163-164.
|
|
GUO Peng. How to effectively carry out risk identification and control[J]. Journal of Safety Science and Technology, 2009, 5(S1):163-164.
|
[8] |
吴耀男, 林雷, 任新温, 等. 一种基于逻辑结构数的改进型FMEA方法[J]. 中国安全科学学报, 2021, 31(10):97-104.
doi: 10.16265/j.cnki.issn1003-3033.2021.10.014
|
|
WU Yaonan, LIN Lei, REN Xinwen, et al. An improved FMEA method based on logical structure number[J]. China Safety Science Journal, 2021, 31(10): 97-104.
doi: 10.16265/j.cnki.issn1003-3033.2021.10.014
|
[9] |
范宗平. 浅析失效模式和影响分析(FMEA)在石油化工产品质量风险管理中的应用[J]. 当代化工研究, 2022(10):107-109.
|
|
FAN Zongping. Application of failure mode and effects analysis(FMEA) in quality risk management of petrochemical products[J]. Modern Chemical Research, 2022(10):107-109.
|
[10] |
殷勇. 石油炼化关键装置风险预警分级方法研究[D]. 北京: 中国地质大学(北京), 2009.
|
|
YIN Yong. The study of grading methods of the risk of the key device of oil refining and chemical for early-warning system[D]. Beijing: China University of Geosciences (Beijing), 2009.
|
[11] |
王孟飞, 屈英杰, 刘振乾. LEC法在建筑施工企业安全评价中的应用[J]. 安全, 2018, 39(8):31-33.
|
|
WANG Mengfei, QU Yingjie, LIU Zhenqian. Application of LEC method in safety evaluation of construction enterprises[J]. Safety & Security, 2018, 39(8):31-33.
|
[12] |
赵广玉. 石油化工装置检修施工安全管理措施[J]. 化工安全与环境, 2022, 35(30):18-21.
|
[13] |
付苗苗, 邓淼磊, 张德贤. 深度神经网络图像目标检测算法综述[J]. 计算机系统应用, 2022, 31(7):35-45.
|
|
FU Miaomiao, DENG Miaolei, ZHANG Dexian. Survey on deep neural network image target detection algorithms[J]. Computer Systems & Applications, 2022, 31(7):35-45.
|
[14] |
陈科圻, 朱志亮, 邓小明, 等. 多尺度目标检测的深度学习研究综述[J]. 软件学报, 2021, 32(4):1201-1227.
|
|
CHEN Keqi, ZHU Zhiliang, DENG Xiaoming, et al. Deep learning for multi-scale object detection: a survey[J]. Journal of Software, 2021, 32(4): 1201-1227.
|
[15] |
KHAN A, SOHAIL A, ZAHOORA U, et al. A survey of the recent architectures of deep convolutional neural networks[J]. Artificial Intelligence Review, 2020, 53(8): 5455-5516.
doi: 10.1007/s10462-020-09825-6
|
[16] |
屈静, 张建彬, 李旭芳, 等. 基于贝叶斯网络的输油管道泄漏事故情景推演[J]. 中国安全科学学报, 2021, 31(1): 192-198.
doi: 10.16265/j.cnki.issn1003-3033.2021.01.028
|
|
QU Jing, ZHANG Jianbin, LI Xufang, et al. Deduction of leakage accident scenarios of oil pipelines based on Bayesian network[J]. China Safety Science Journal, 2021, 31(1): 192-198.
doi: 10.16265/j.cnki.issn1003-3033.2021.01.028
|