中国安全科学学报 ›› 2022, Vol. 32 ›› Issue (8): 37-44.doi: 10.16265/j.cnki.issn1003-3033.2022.08.2009

• 安全社会科学与安全管理 • 上一篇    下一篇

基于ISM-BN的内河船舶航行风险因素研究*

赵建伟1,2,3(), 谢磊1,2, 杨洋1,2,3, 胡昕源1,2,3, 欧昌奎1,2,3, 曾荣1,2,3   

  1. 1 武汉理工大学 智能交通系统研究中心,湖北 武汉 430063
    2 武汉理工大学 国家水运安全工程技术研究中心,湖北 武汉 430063
    3 武汉理工大学 交通与物流工程学院,湖北 武汉 430063
  • 收稿日期:2022-02-14 修回日期:2022-06-12 出版日期:2022-09-05
  • 作者简介:

    赵建伟 (1997—),男,江西南城人,硕士研究生,研究方向为水路交通安全、船舶工业、自动化技术。E-mail:

    谢磊, 副研究员。

  • 基金资助:
    国家重点研发计划课题项目(2019YFB1600600); 国家重点研发计划课题项目(2019YFB1600604)

An ISM-BN based research on navigation risk factors of inland waterway vessels

ZHAO Jianwei1,2,3(), XIE Lei1,2, YANG Yang1,2,3, HU Xinyuan1,2,3, OU Changkui1,2,3, ZENG Rong1,2,3   

  1. 1 Intelligent Transportation System Research Center, Wuhan University of Technology, Wuhan Hubei 430063,China
    2 National Engineering Research Center for Water Transport Safety, Wuhan University of Technology,Wuhan Hubei 430063,China
    3 School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan Hubei 430063,China
  • Received:2022-02-14 Revised:2022-06-12 Published:2022-09-05

摘要:

为保障内河船舶航行安全,手动收集近5年长江段海事事故报告,提取代表风险因素频率的主要数据特征;结合事故调查报告分析风险要素,确定船舶航行风险评价指标体系;采用解释结构模型(ISM)构建风险因素之间的关联性模型,获得因素之间的层级关系以判定风险因素间的相关性。采用数据驱动的贝叶斯网络(BN),研究各因素对海事安全的影响,并通过敏感性分析和以往事故记录进行模型验证。结果表明:事故类型涉及到的关键风险因素有水域位置、船型、操纵执行和航道条件;通过所提方法能够识别出不同事故类型的关键风险因素,且风险模型的平均预测精度为82.87%。

关键词: 解释结构模型(ISM), 贝叶斯网络(BN), 内河船舶, 航行风险因素, 事故类型

Abstract:

To ensure the navigation safety of inland waterway vessels, the maritime accident reports of the Yangtze River in recent 5 years were collected manually, and the main data representing the frequency of risk factors were extracted. Combined with the accident investigation report, the risk factors are analyzed, and the evaluation index system of ship navigation risk is determined. The correlation modeling between risk factors was constructed by the ISM, and the hierarchical relationship between factors was obtained to determine the correlation between risk factors. The influence of various factors on maritime safety was studied by data-driven BN, and the model was verified by sensitivity analysis and previous accident records. The results show that the key risk factors involved in accident types include water location, ship type, maneuvering execution and channel conditions. The method proposed in this paper can identify the main risk factors of different accident types, and the average prediction accuracy of the risk model is 82.87%.

Key words: interpretive structural model(ISM), Bayesian network(BN), inland waterway vessel, navigational risk factor, accident type