[1] GB15577—2018,粉尘防爆安全规程[S]. GB15577-2018,Safety regulations for dust explosion prevention and protection[S]. [2] 张二强,张礼敬,陶刚,等.粉尘爆炸特征和预防措施探讨[J].中国安全生产科学技术,2012,8(2): 88-92. ZHANG Erqiang,ZHANG Lijing,TAO Gang,et al.Preliminary study on characteristics and preventive measures of the dust explosion[J].Journal of Safety Science and Technology,2012,8(2): 88-92. [3] 陈立红,郭汉彦.关于可燃粉尘爆炸危险性分级的探讨[J].爆炸性环境电气防爆技术,1992(1): 6-8. [4] 胡东涛,陈先锋,陈曦.不同粒径铝粉火焰传播特性试验研究[J].中国安全科学学报,2016,26(8): 41-45. HU Dongtao, CHEN Xianfeng,CHEN Xi. Experimental study on aluminum dust flame propagation characteristics[J].China Safety Science Journal,2016,26(8): 41-45. [5] 韩波,李刚,马赫,等.机械加工伴生粉尘爆炸危险性分析[J].中国安全科学学报,2018,28(9): 51-55. HAN Bo,LI Gang, MA He, et al. Analysis of explosion risk of dust from mechanical processing[J].China Safety Science Journal,2018, 28(9): 51-55. [6] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]. Advances in Neural Information Processing Systems,2015: 91-99. [7] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2014: 580-587. [8] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1 904-1 916. [9] GIRSHICK R. Fast R-CNN[C]. Proceedings of the IEEE International Conference on Computer Vision. 2015: 1 440-1 448. [10] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2016: 770-778. |