中国安全科学学报 ›› 2023, Vol. 33 ›› Issue (S1): 119-127.doi: 10.16265/j.cnki.issn1003-3033.2023.S1.2481

• 安全工程技术 • 上一篇    下一篇

基于CNN-aGRU融合模型的尾矿坝浸润线预测方法

阮顺领1,2(), 韩思淼1,2,**(), 张宁宁1, 顾清华1,2, 卢才武1,3   

  1. 1 西安建筑科技大学 资源工程学院, 陕西 西安 710055
    2 西安建筑科技大学 矿山系统工程研究所, 陕西 西安 710055
    3 西安市智慧工业感知计算与决策重点实验室, 陕西 西安 710055
  • 收稿日期:2023-02-14 修回日期:2023-05-08 出版日期:2023-06-30
  • 通讯作者:
    **韩思淼(1999—),女,安徽阜阳人,硕士研究生,研究方向为矿山安全智能分析。E-mail:
  • 作者简介:

    阮顺领 (1981—),男,河南周口人,博士,副教授,主要从事矿山系统优化与管理方面的研究。E-mail:

    顾清华 教授

    卢才武 教授

  • 基金资助:
    国家自然科学基金面上项目(52374160); 陕西省自然科学基础研究计划项目(2022JM-201)

Prediction method of saturation line of tailings dam based on CNN-aGRU fusion model

RUAN Shunling1,2(), HAN Simiao1,2,**(), ZHANG Ningning1, GU Qinghua1,2, LU Caiwu1,3   

  1. 1 School of Resources Engineering, Xi'an University of Architecture and Technology, Xi'an Shaanxi 710055, China
    2 Institute of Mine Systems Engineering, Xi'an University of Architecture and Technology, Xi'an Shaanxi 710055, China
    3 Xi'an Key Laboratory of Perceptive Computing and Decision for Intelligent Industry, Xi'an Shaanxi 710055, China
  • Received:2023-02-14 Revised:2023-05-08 Published:2023-06-30

摘要:

为预防尾矿库溃坝安全事故,关联分析在线监测数据的深度,提出将卷积神经网络(CNN)与门控循环单元(GRU)融合的尾矿库浸润线安全态势预测方法,以掌握坝体的稳定性状况与安全发展态势。该方法综合考虑尾矿库监测数据复杂非线性和时序关联性等特点,利用一维卷积神经网络(1D CNN)模型获取多源数据的局部关联特征和空间特征,并利用GRU模型获取浸润线数据的时序特征,采用自适应矩估计权重衰减优化算法(AdamW)优化模型梯度的自适应性,提高预测模型泛化能力和预测精度,并以河南洛阳某金属露天钼矿尾矿坝进行试验验证。试验结果表明:对比传统BP神经网络、长短期记忆网络(LSTM)、GRU等预测模型,该预测模型在平均绝对百分比误差(MAPE)、平均绝对误差(MAE)、均方误差(MSE)、均方根误差(RMSE)、R2几项关键指标上,分别达到0.013 915 62、0.005 432、0.000 045、0.006 702、0.998 334,实现对浸润线变化态势快速精准预测。

关键词: 卷积神经网络(CNN), 门控循环单元(GRU), 尾矿坝, 浸润线, 自适应矩估计权重衰减优化算法(AdamW)

Abstract:

In order to prevent the safety accident caused by tailings dam breaks, correlation analysis was conducted on the depth of online monitoring data. A safety situation prediction method of the saturation line of the tailings dam was proposed, which integrated CNN and GRU, so as to grasp the stability and safety development trend of the dam. By comprehensively considering the complex nonlinear and time-series correlation characteristics of monitoring data of the tailings dam, a one-dimensional CNN network was introduced to obtain the local correlation characteristics and spatial characteristics among the multi-source data. Then the GRU model was used to extract the time-series characteristics of the saturation line data. AdamW was used to optimize the adaptability of the model gradient, so as to improve the generalization ability and prediction accuracy of the prediction model. The method was tested and verified in the tailings dam of a metal open-pit molybdenum mine in Luoyang, Henan Province. The results show that compared with the traditional back propagation (BP) neural network, long short-term memory (LSTM) network, GRU, and other prediction models, the proposed prediction model reaches 0.013 915 62, 0.005 432, 0.000 045, 0.006 702, and 0.998 334 for the key indices of mean absolute percentage error (MAPE), mean absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE), and R2, respectively. The method thus can rapidly and accurately predict saturation line changes.

Key words: convolutional neural network (CNN), gated recurrent unit (GRU), tailings dam, saturation line, Adam weight decay optimizer (AdamW)