中国安全科学学报 ›› 2023, Vol. 33 ›› Issue (8): 93-100.doi: 10.16265/j.cnki.issn1003-3033.2023.08.1897

• 安全工程技术 • 上一篇    下一篇

基于S2S-CNN-GRU的机场离港航班延误预测

李善梅(), 周相志   

  1. 中国民航大学 空中交通管理学院,天津 300300
  • 收稿日期:2023-02-17 修回日期:2023-05-20 出版日期:2023-10-08
  • 作者简介:

    李善梅 (1982—),女,天津人,博士,副教授,主要从事空中交通流理论、空中交通复杂系统建模与分析等方面的研究。E-mail:

  • 基金资助:
    国家自然科学基金资助(78101215); 天津市自然科学基金资助(21JCZDJC00780); 中央高校基本科研业务费专项资金资助(312202YY02); 中央高校基本科研业务费专项资金资助(3122019129); 民航安全能力建设资金项目(SKZ49420220027)

Prediction of airport departure delay based on S2S-CNN-GRU

LI Shanmei(), ZHOU Xiangzhi   

  1. College of Air Traffic Management, Civil Aviation University of China, Tianjin 300300, China
  • Received:2023-02-17 Revised:2023-05-20 Published:2023-10-08

摘要:

为解决空中交通管理中机场离港航班延误预测难题,采用序列到序列(S2S)框架将门控单元循环网络(GRU)和卷积神经网络(CNN)相结合,提出一种基于S2S-CNN-GRU的航班延误预测模型,主要采用序列到序列的框架结构,利用CNN来捕获机场航班延误状态的结构化特征,作为编码器的输入,利用GRU捕获延误状态的时间特征,并作为解码器输出预测结果,提高预测的准确性。采用美国实际数据检验该模型的有效性,并同其他模型进行对比。结果表明:基于S2S-CNN-GRU的航班延误预测模型预测的平均绝对误差(MAE)为3.03,均方根误差(RMSE)为5.82,明显优于其他模型的预测效果。

关键词: 序列到序列(S2S)-卷积神经网络(CNN)-门控循环单元(GRU)模型, 离港航班, 延误预测, 神经网络, 特征提取

Abstract:

In order to solve the problem of airport departure delay prediction in air traffic management, the sequence to sequence (S2S) framework was used to combine the Gate Recurrent Unit (GRU) and Convolutional Neural Network (CNN). A flight delay prediction model based on S2S-CNN-GRU was proposed using the sequence-to-sequence structure. The CNN was used to capture the structural features of airport flight delay status as the input of the encoder, and the GRU was used to capture the time features of the delay status and output the prediction results as the decoder. At the same time, the attention mechanism framework was added to improve the accuracy of prediction. Finally, the effectiveness of this model was tested with the actual data of the United States and compared with other models. The results show that mean absolute error(MAE) of the prediction of this model is 3.03, and root mean square error(RMSE) is 5.82, which is significantly better than the prediction results of other models.

Key words: sequence to sequence(S2S)-convolutional neural network(CNN)-gate recurrent unit(GRU) (S2S-CNN-GRU) model, departure flight, delay prediction, neural network, feature extraction