中国安全科学学报 ›› 2023, Vol. 33 ›› Issue (8): 117-124.doi: 10.16265/j.cnki.issn1003-3033.2023.08.1529

• 安全工程技术 • 上一篇    下一篇

基于LSTM循环神经网络的雷电潜势预测

吴安坤(), 吴仕军, 丁旻, 张弛, 张淑霞   

  1. 贵州省气象灾害防御技术中心,贵州 贵阳 550081
  • 收稿日期:2023-02-20 修回日期:2023-05-25 出版日期:2023-10-08
  • 作者简介:

    吴安坤 (1986—),男,贵州思南人,硕士,高级工程师,主要从事气象灾害防御技术工作。E-mail:

    吴仕军 高级工程师

    丁旻 高级工程师

    张淑霞 高级工程师

  • 基金资助:
    贵州省科技基金资助(黔科合基础-ZK[2022]一般245); 贵州省科技支撑项目(黔科合支撑[2021]一般510)

Prediction of lightning potential based on LSTM recurrent neural network

WU Ankun(), WU Shijun, DING Min, ZHANG Chi, ZHANG Shuxia   

  1. Guizhou Lightning Protection and Disaster Reduction Center, Guiyang Guizhou 550081, China
  • Received:2023-02-20 Revised:2023-05-25 Published:2023-10-08

摘要:

为探索循环神经网络模型在非线性预测中的应用,进一步提高雷电潜势预测的准确率,构建长短期记忆(LSTM)循环神经网络模型,并以贵阳探空站为例,统计站点周边100 km、12 h范围内的闪电次数,获取23个与雷电活动关联度r>0.8的探空物理量参数,以此作为预测模型的样本特征;分析超参数选取对模型的影响,开展(0,24]h内的雷电潜势预测研究,并对比检验效果。研究结果表明:构建学习率为0.000 1、批量样本量为32、输入序列长度为10的LSTM网络模型,有利于提高模型泛化和快速收敛;通过输入前5天的大风指数、修正指数等23个探空物理量参数,发现(0,12]h的雷电潜势预测效果明显优于(12,24]h;采用该模型验证(0,12]h测试数据,得出被试工作特征曲线线下面积(AUC)接近于1,命中率(POD)为93.4%,虚警率(FAR)为17.4%,临界成功指数(CSI)为78.1%,验证了该模型的有效性。

关键词: 长短期记忆(LSTM), 循环神经网络, 雷电潜势预测, 大气物理量参数, 关联度, 准确率

Abstract:

This study aims to explore the application of recurrent neural network models in nonlinear prediction and improve the accuracy of thunderstorm potential prediction. An LSTM model was constructed using Guiyang sounding station as an example, and the number of lightning occurrences within a 100 km and 12-hour range around the station was counted. Twenty-three sounding physical parameters with a correlation coefficient (r) of more than 0.8 with lightning activity were obtained and used as sample features for the prediction model. The impact of hyperparameter selection on the model was analyzed. An investigation was carried out into thunderstorm potential forecasting within a 0-24 hour timeframe and its performance was evaluated and compared. The research results indicate that constructing an LSTM network model with a learning rate of 0.000 1, batch sample size of 32, and input sequence length of 10 is beneficial for improving the model's generalization and accelerating its convergence. The model, by inputting 23 sounding physical parameters such as gale index and correction index of the previous 5 days, found that effect of 0-12 hour thunderstorm potential prediction is significantly better than that of 12-24 hour prediction. This model was used to verify the 0-12 hour test data and it was found that the area under curve(AUC) the receiver operating characteristic curve is close to 1, the hit rate is 93.4%, the false alarm rate is 17.4%, the critical success index is 78.1%, and the error rate is only 6.6%, which verifies the effectiveness of the model used.

Key words: long short-term memory (LSTM) recurrent neural network, atmospheric physical quantity parameters, correlation, lightning potential prediction, accuracy