[1] |
中国民用航空局. 2020年民航行业发展统计公报[R], 2020.
|
[2] |
陈志杰. 空域管理理论与方法[M]. 北京: 科学出版社, 2012: 113-120.
|
[3] |
岳仁田, 张知波. 脆弱性多因素耦合作用下空管亚安全态识别[J]. 中国安全科学学报, 2022, 32(4): 8-14.
doi: 10.16265/j.cnki.issn1003-3033.2022.04.002
|
|
YUE Rentian, ZHANG Zhibo. Sub-safety state identification of ATC under multi-factor coupling of vulnerability[J]. China Safety Science Journal, 2022, 32(4): 8-14.
doi: 10.16265/j.cnki.issn1003-3033.2022.04.002
|
[4] |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521: 436-444.
doi: 10.1038/nature14539
|
[5] |
TAKEICHI N, KAIDA R, SHIMOMURA A, et al. Prediction of delay due to air traffic control by machine learning[C]. AIAA Modeling and Simulation Technologies Conference, 2017: 13-23.
|
[6] |
KHANMOHAMMADI S, TUTUN S, KUCUK Y. A new multilevel input layer artificial neural network for predicting flight delays at JFK airport[J]. Procedia Computer Science, 2016, 95: 237-244.
doi: 10.1016/j.procs.2016.09.321
|
[7] |
王慧, 李永亮, 丁辉, 等. 基于深度学习的航班延误预测方法[J]. 指挥信息系统与技术, 2020, 11(5): 11-17.
|
|
WANG Hui, LI Yongliang, DING Hui, et al. Flight delay prediction method based on deep learning[J]. Command Information System and Technology, 2020, 11(5): 11-17.
|
[8] |
吴仁彪, 赵娅倩, 屈景怡, 等. 基于 CBAM-CondenseNet 的航班延误波及预测模型[J]. 电子与信息学报, 2021, 43(1): 187-195.
|
|
WU Renbiao, ZHAO Yaqian, QU Jingyi, et al. Flight delay propagation prediction model based on CBAM-condense Net[J]. Journal of Electronics & Information Technology, 2021, 43(1): 187-195.
|
[9] |
王春政, 胡明华, 杨磊, 等. 空中交通延误预测研究综述[J]. 系统工程与电子技术, 2022, 44(3): 863-874.
doi: 10.12305/j.issn.1001-506X.2022.03.19
|
|
WANG Chunzheng, HU Minghua, YANG Lei, et al. Review on air traffic delay prediction[J]. Systems Engineering and Electronics, 2022, 44(3): 863-874.
doi: 10.12305/j.issn.1001-506X.2022.03.19
|
[10] |
LI Zewen, LIU Fan, YANG Wenjie, et al. A survey of convolutional neural networks: analysis, applications, and prospects[J]. IEEE Transactions on Neural Networks and Learing Systems, 2022, 12: 6999-7017.
|
[11] |
刘擘龙, 张宏立, 王聪, 等. 基于序列到序列和注意力机制的超短期风速预测[J]. 太阳能学报, 2021, 42(9): 286-294.
|
|
LIU Bolong, ZHANG Hongli, WANG Cong, et al. Ultra-short-term wind speed prediction based on sequence-to-sequence and attention mechanism[J]. Acta Energiae Solaris Sinica, 2021, 42(9): 286-294.
|
[12] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
doi: 10.1162/neco.1997.9.8.1735
pmid: 9377276
|
[13] |
LIU Xinyao, CUI Baojiang, XING Lantao. Generating synthetic trajectory data using GRU[J]. Intelligent Automation and Soft Computing, 2022, 34(1): 295-305.
doi: 10.32604/iasc.2022.020032
|
[14] |
SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[J]. Advances In Neural Information Processing Systems, 2014, 27: 1-9.
|
[15] |
魏志强, 李晓晨. 基于尾流安全评估的航空器分类方法改进研究[J]. 中国安全科学学报, 2022, 32(7): 70-76.
doi: 10.16265/j.cnki.issn1003-3033.2022.07.1241
|
|
WEI Zhiqiang, LI Xiaochen. Improvement of aircraft classification method based on wake safety assessment[J]. China Safety Science Journal, 2022, 32(7): 70-76.
doi: 10.16265/j.cnki.issn1003-3033.2022.07.1241
|