中国安全科学学报 ›› 2023, Vol. 33 ›› Issue (S2): 55-59.doi: 10.16265/j.cnki.issn1003-3033.2023.S2.0019

• 安全工程技术 • 上一篇    下一篇

基于神经网络的振动给料机故障诊断算法

张斌(), 张辛忻, 杨海涛   

  1. 国能准能集团有限责任公司, 内蒙古 鄂尔多斯 010300
  • 收稿日期:2023-08-20 修回日期:2023-11-22 出版日期:2023-12-30
  • 作者简介:

    张 斌 (1972—),男,内蒙古凉城人,本科,高级工程师,主要从事环境治理工作。E-mail:

    张辛忻 高级工程师

    杨海涛 高级工程师

Neural network-based fault diagnosis algorithm for vibration feeder

ZHANG Bin(), ZHANG Xinxin, YANG Haitao   

  1. Guoneng Zhunneng Group Co., Ltd., Ordos Inner Mongolia 010300, China
  • Received:2023-08-20 Revised:2023-11-22 Published:2023-12-30

摘要:

为解决振动给料机故障诊断采用传统信号处理方式缺乏自适应性的问题,引入基于自适应一维卷积神经网络(1D-CNN)的故障诊断算法;通过深入分析振动给料机的故障特性,将故障状态的原始振动信号进行预处理,构建训练样本和测试样本;将每个训练样本按照时间划分,作为1D-CNN的输入,在不同时间段内对振动信号的特征进行自适应层级化提取。结果表明:通过引入自适应性,算法能够更灵活地适应振动信号中存在的复杂动态模式。这种自适应性带来了更高的诊断准确度,尤其是在面对振动特性频繁变化或者存在噪声干扰的情况下。通过选取合适的神经网络尺寸,输出针对振动给料机的故障状态的诊断结果,在重叠比例为49%的情况下,准确率高达90.2%。

关键词: 振动给料机, 一维卷积神经网络, 故障诊断, 自适应提取, 重叠比例

Abstract:

To address the lack of adaptability in traditional signal processing methods for vibration feeder fault diagnosis, an adaptive 1D CNN-based fault diagnosis algorithm was introduced. Through an in-depth analysis of the fault characteristics of the vibration feeder, the original vibration signals of fault states were preprocessed to construct training and testing samples. Each training sample was partitioned over time and served as the input for the 1D CNN, enabling adaptive hierarchical extraction of vibration signal features at different time intervals. The results show that by introducing adaptability, the algorithm can adapt more flexibly to complex dynamic patterns in vibration signals. This adaptability results in higher diagnostic accuracy, especially when facing frequent changes in vibration characteristics or the presence of noise interference. After selecting appropriate neural network dimensions, the algorithm outputs diagnostic results for fault states in the vibration feeder. With an overlap ratio of 49%, the accuracy reaches 90.2%.

Key words: vibration feeder, one-dimensional convolutional neural network (1D-CNN), fault diagnosis, adaptive extraction, overlap ratio

中图分类号: