[1] |
何永勃, 董玉珊, 雷建, 等. 飞机货舱火灾多传感器探测方法研究[J]. 中国安全科学学报, 2018, 28(5):74-79.
doi: 10.16265/j.cnki.issn1003-3033.2018.05.013
|
|
HE Yongbo, DONG Yushan, LEI Jian, et al. Research on multi-sensor method for detecting aircraft cargo fire[J]. China Safety Science Journal, 2018, 28 (5): 74-79.
doi: 10.16265/j.cnki.issn1003-3033.2018.05.013
|
[2] |
何永勃, 张文杰, 杨伟, 等. 飞机货舱复合烟雾探测方法研究[J]. 中国安全科学学报, 2019, 29(1):43-48.
doi: 10.16265/j.cnki.issn1003-3033.2019.01.008
|
|
HE Yongbo, ZHANG Wenjie, YANG Wei, et al. Research on multi-sensor smoke detection method for aircraft cargo compartment[J]. China Safety Science Journal, 2019, 29(1):43-48.
doi: 10.16265/j.cnki.issn1003-3033.2019.01.008
|
[3] |
陈健. 舱室压力对池火燃烧特性的影响研究[D]. 合肥: 中国科学技术大学, 2020.
|
|
CHEN Jian. Study on the effect of chamber pressure on burning characteristics of pool fires[D]. Hefei: University of Science and Technology of China, 2020.
|
[4] |
杨建忠, 邵资焱, 陈希远. 通风对飞机货舱烟雾探测影响研究[J]. 中国安全科学学报, 2019, 29(2):69-75.
|
|
YANG Jianzhong, SHAO Ziyan, CHEN Xiyuan. Researsh on influence of ventilation on detection of smoke in an aircraft cargo compartment[J]. China Safety Science Journal, 2019, 29(2):69-75.
|
[5] |
王洁, 潘杨月, 郑荣, 等. 飞机货舱低气压环境对火灾探测参量影响研究[J]. 火灾科学, 2016, 5(4):213-217.
|
|
WANG Jie, PAN Yangyue, ZHENG Rong, et al. Experimental investigation on the influence of low pressure on fire detection signals in aircraft cargo compartment fire[J]. Fire Safety Science, 2016, 25 (4): 213-217.
|
[6] |
刘伟辉. 硅热式风速传感器的温漂特性及其补偿算法研究[D]. 南京: 东南大学, 2017.
|
|
LIU Weihui. Temperature drift characteristics and compensation algorithm of silicon thermal wind sensor[D]. Nanjing: Southeast University, 2017.
|
[7] |
REN Yijun, ZHAO Guofeng, QIAN Min, et al. A highly sensitive triple-coil inductive debris sensor based on an effective unbalance compensation circuit[J]. Measurement Science and Technology, 2019, 30(1) :015 108-015 116.
|
[8] |
江东, 单薏, 刘绪坤, 等. 函数拟合法力数字传感器的非线性和温度补偿[J]. 传感器与微系统, 2016, 35(2):16-18,22.
|
|
JIANG Dong, SHAN Yi, LIU Xukun, et al. Function fitting method for non-linear and temperature compensation of force digital sensor[J]. Transducer and Microsystem Techologies, 2016, 35 (2): 16-18, 22.
|
[9] |
田伟, 张广祥, 崔炎, 等. 基于牛顿算法的压力传感器温压补偿方法[J]. 仪表技术与传感器, 2019(1):97-99,105.
|
|
TIAN Wei, ZHANG Guangxiang, CUI Yan, et al. Temperature and pressure compensation method for pressure sensor based on newton algorithm[J]. Instrument Technology and Sensor, 2019 (1): 97-99, 105.
|
[10] |
吴小红. 基于神经网络温度软补偿的光纤光栅压力传感器研究[D]. 武汉: 武汉理工大学, 2015.
|
|
WU Xiaohong. Research on fiber bragg grating pressure sensor of temperature soft compensation based on neural network[D]. Wuhan: Wuhan University of Technology, 2015.
|
[11] |
LI Yuanjiang, LI Yuehua, LI Feng, et al. The research of temperature compensation for thermopile sensor based on improved PSO-BP algorithm[J]. Mathematical Problems in Engineering, 2015:DOI: 10.1155/2015/854945.
doi: 10.1155/2015/854945
|
[12] |
HAN Zhiming, HONG Li, MENG Juan, et al. Temperature drift modeling and compensation of capacitive accelerometer based on AGA-BP neural network[J]. Measurement, 2020:DOI: 10.1016/j.measurement.2020.108019.
doi: 10.1016/j.measurement.2020.108019
|
[13] |
何怡刚, 陈张辉, 李兵, 等. 改进AFSA-BP神经网络的湿度传感器温度补偿研究[J]. 电子测量与仪器学报, 2018, 32 (7):95-100.
|
|
HE Yigang, CHEN Zhanghui, LI Bing, et al. Research on temperature compensation for humidity sensor of improved AFSA-BP neural network[J]. Journal of Electronic Measurement and Instrumentation, 2018, 32 (7): 95-100.
|
[14] |
牛萍娟, 程峥, 田海涛, 等. 非色散红外CO2传感器温度补偿模型研究[J]. 仪表技术与传感器, 2019(8):17-20.
|
|
NIU Pingjuan, CHENG Zheng, TIAN Haitao, et al. Research on temperature compensation model of non-dispersive infrared CO2 sensor[J]. Instrument Technology and Sensor, 2019(8):17-20.
|
[15] |
方俊, 袁宏永, 赵建华. 气体传感器及其在火灾探测中的应用[J]. 火灾科学, 2002, 11(3):180-185,191.
|
|
FANG Jun, YUAN Hongyong, ZHAO Jianhua. Gas sensor and its application in fire detection[J]. Fire Safety Science, 2002, 11(3): 180-185,191.
|
[16] |
方丽丽. 基于NDIR的CO2气体浓度监测的飞机火警探测关键技术研究[D]. 合肥: 中国科学技术大学, 2016.
|
|
FANG Lili. Study on the CO2 based gas concentration monitoring of key technologies of aircraft fire detection based on NDIR[D]. Hefei: University of Science and Technology of China, 2016.
|