中国安全科学学报 ›› 2022, Vol. 32 ›› Issue (6): 163-170.doi: 10.16265/j.cnki.issn1003-3033.2022.06.0947
收稿日期:
2022-02-07
修回日期:
2022-04-13
出版日期:
2022-06-28
作者简介:
张 渺 (1985—),女,陕西西安人,本科,高级工程师,主要从事城市轨道交通运营安全管理、运营期间安全评估等方面的工作。E-mail: 308767857@qq.com。 |
Received:
2022-02-07
Revised:
2022-04-13
Published:
2022-06-28
摘要:
为有效控制地铁运营的安全风险,考虑地铁运营安全的特点,引入云模型方法与组合赋权技术,构建地铁运营安全风险评价模型。以西安某地铁所辖线路为例,首先,构建地铁运营安全风险评价三级指标体系,基于欧氏距离组合运用序关系分析(G1)法与熵权法(EW)确定各指标的综合权重系数;然后,依据各指标量化分级标准,采用Matlab确定云的数字特征并生成云图;最后,运用正向云发生器确定各指标的确定度。结果表明:该模型可以减少主观随机性,消除单一的客观误差;所辖T1—~ T4运营线路安全风险等级分别为中等(V3)、较低(V2)、低(V1)、中等(V3),与实际评价结果吻合较好。
张渺. G1-EW组合赋权云模型下地铁运营安全风险评价[J]. 中国安全科学学报, 2022, 32(6): 163-170.
ZHANG Miao. Risk assessment of metro operation based on G1-EW combination weighting cloud model[J]. China Safety Science Journal, 2022, 32(6): 163-170.
表1
地铁运营安全风险评价指标评价准则
二级指 标Ui | 三级指标Uij | 评价准则 | 风险等级 | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
低(V1) | 较低(V2) | 中等(V3) | 较高(V4) | 高(V5) | ||||||||||||||||||||||
城市人 口因素 U1 | 客流站台饱和度U11 | 平均到达率/服务速率 | ≤0.1 | (0.1,0.3] | (0.3,0.5] | (0.5,0.8] | >0.8 | |||||||||||||||||||
客流超高峰系数U12 | 超高峰时段进站或出站人次 高峰小时进站或出站人次 | ≤1.1 | (1.1,1.2] | (1.2,1.3] | (1.3,1.4] | >1.4 | ||||||||||||||||||||
客流最大波动系数U13 | 波动系数 | ≤1.2 | (1.2,1.3] | (1.3,1.4] | (1.4,1.5] | >1.5 | ||||||||||||||||||||
客流楼梯拥挤度U14 | 楼梯拥堵程度/% | ≤0.15 | (0.15,0.3] | (0.3,0.45] | (0.45,0.6] | >0.6 | ||||||||||||||||||||
客流通道拥挤度U15 | 通道拥堵程度/% | ≤0.15 | (0.15,0.3] | (0.3,0.45] | (0.45,0.6] | >0.6 | ||||||||||||||||||||
地铁设 备设施 U2 | 车辆系统故障率U21 | 设备故障时间/总运行时间/% | ≤5 | (5,10] | (10,15] | (15,20] | >20 | |||||||||||||||||||
供电系统故障率U22 | 设备故障时间/总运行时间/% | ≤5 | (5,10] | (10,15] | (15,20] | >20 | ||||||||||||||||||||
线路轨道故障率U23 | 设备故障时间/总运行时间/% | ≤5 | (5,10] | (10,15] | (15,20] | >20 | ||||||||||||||||||||
二级指 标Ui | 三级指标Uij | 评价准则 | 风险等级 | |||||||||||||||||||||||
低(V1) | 较低(V2) | 中等(V3) | 较高(V4) | 高(V5) | ||||||||||||||||||||||
机电设备合格率U24 | 维护保养合格率/% | >90 | (80,90] | (70,80] | (60,70] | ≤60 | ||||||||||||||||||||
通信设备合格率U25 | 维护保养合格率/% | >90 | (80,90] | (70,80] | (60,70] | ≤60 | ||||||||||||||||||||
监测设备合格率U26 | 维护保养合格率/% | >90 | (80,90] | (70,80] | (60,70] | ≤60 | ||||||||||||||||||||
消防设施更新率U27 | 设备更换频率/% | >90 | (80,90] | (70,80] | (60,70] | ≤60 | ||||||||||||||||||||
地铁安 全管理 U3 | 安全规章制度完善性U31 | 实际规章制度条数/ 规定规章制度条数/% | >90 | (80,90] | (70,80] | (60,70] | ≤60 | |||||||||||||||||||
安全管理规程落实性U32 | 实际落实文件数/ 规定制度文件数/% | >90 | (80,90] | (70,80] | (60,70] | ≤60 | ||||||||||||||||||||
安全技术人员配备率U33 | 实际配备数量/规定配备数量/% | >95 | (90,95] | (85,90] | (80,85] | ≤80 | ||||||||||||||||||||
安全教育培训情况U34 | 教育培训学时/h | >96 | (48,96] | (24,48] | (12,24] | ≤12 | ||||||||||||||||||||
安全技术考核达标率U35 | 考核达标率/% | >95 | (90,95] | (85,90] | (80,85] | ≤80 | ||||||||||||||||||||
应急预案完善性U36 | 实际应急预案条数/ 规定应急预案条数/% | >90 | (80,90] | (70,80] | (60,70] | ≤60 | ||||||||||||||||||||
应急演练频率U37 | 频率/(次·a-1) | >36 | (24,36] | (12,24] | (6,12] | ≤6 | ||||||||||||||||||||
应急救援便捷性 | 便捷程度 | 优(5) | 良(4) | 中等(3) | 合格(2) | 差(1) | ||||||||||||||||||||
地铁环 境因素 U4 | 噪声控制合规率U41 | 环境噪声级/dB | ≤80 | (80,85] | (85,90] | (90,95] | >95 | |||||||||||||||||||
地铁通风合格率U42 | 空气危害程度 | 无害(5) | 较无害(4) | 中等(3) | 轻度(2) | 重度(1) | ||||||||||||||||||||
引导标志完善率U43 | 有效标识数量/规定标识数量/% | >95 | (90,95] | (85,90] | (80,85] | ≤80 | ||||||||||||||||||||
自然灾害频率U44 | 频率程度 | 几乎不(5) | 极少(4) | 偶尔(3) | 较少(2) | 经常(1) |
表2
西安地铁各线段地铁运营安全风险评价指标值
编号 | U11 | U12 | U13 | U14 | U15 | U21 | U22 | U23 | U24 | U25 | U26 | U27 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | 0.26 | 1.3 | 1.8 | 0.35 | 0.25 | 0.15 | 0.2 | 0.25 | 96 | 95 | 94 | 76 |
T2 | 0.1 | 1.5 | 1.6 | 0.23 | 0.24 | 0.68 | 0.71 | 0.51 | 97 | 96 | 95 | 89 |
T3 | 0.25 | 1.8 | 1.7 | 0.34 | 0.34 | 0.17 | 0.16 | 0.18 | 97 | 98 | 96 | 88 |
T4 | 0.15 | 1.2 | 1.4 | 0.27 | 0.31 | 0.09 | 0.11 | 0.1 | 98 | 99 | 98 | 75 |
编号 | U31 | U32 | U33 | U34 | U35 | U36 | U37 | U38 | U41 | U42 | U43 | U44 |
T1 | 94 | 92 | 95 | 72 | 89 | 94 | 24 | 4 | 87 | 5 | 96 | 5 |
T2 | 92 | 90 | 95 | 72 | 85 | 93 | 24 | 5 | 89 | 5 | 92 | 5 |
T3 | 93 | 91 | 95 | 72 | 88 | 92 | 24 | 4 | 88 | 5 | 93 | 5 |
T4 | 95 | 92 | 95 | 72 | 91 | 91 | 24 | 4 | 90 | 5 | 98 | 5 |
表3
地铁运营安全风险城市人口因素评价指标的特征参数
评价指标 | V1(En,Ex,He) | V2(En,Ex,He) | V3(En,Ex,He) | V4(En,Ex,He) | V5(En,Ex,He) |
---|---|---|---|---|---|
客流站台饱和度U11 | (0.05,0.016 7, 0.000 835) | (0.2,0.033, 0.001 65) | (0.4,0.033, 0.001 65) | (0.65,0.05, 0.002 5) | (0.8,0.05, 0.002 5) |
客流超高峰系数U12 | (0.55,0.183, 0.009 15) | (1.15,0.016 7, 0.000 84) | (1.25,0.016 7, 0.000 84) | (1.35,0.016 7, 0.000 84) | (1.4,0.0167, 0.000 84) |
客流最大波动系数U13 | (0.6,0.2, 0.01) | (1.25,0.016 7, 0.000 84) | (1.35,0.016 7, 0.000 84) | (1.45,0.0167, 0.000 84) | (1.5,0.0167, 0.000 84) |
客流楼道拥挤度U14 | (0.075,0.025, 0.001 25) | (0.225,0.025, 0.001 25) | (0.375,0.025, 0.001 25) | (0.525,0.025, 0.001 25) | (0.6,0.025, 0.001 25) |
客流通道拥挤度U15 | (0.075,0.025, 0.001 25) | (0.225,0.025, 0.001 25) | (0.375,0.025, 0.001 25) | (0.525,0.025, 0.001 25) | (0.6,0.025, 0.001 25) |
表4
地铁运营安全风险评价指标因素权重值
指标 | U11 | U12 | U13 | U14 | U15 | U21 | U22 | U23 | U24 | U25 | U26 | U27 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
G1 | 0.035 3 | 0.038 8 | 0.050 3 | 0.073 2 | 0.066 6 | 0.030 8 | 0.088 8 | 0.103 1 | 0.048 7 | 0.088 2 | 0.036 7 | 0.073 1 |
EW | 0.042 9 | 0.035 9 | 0.044 0 | 0.036 6 | 0.040 9 | 0.031 8 | 0.034 8 | 0.049 1 | 0.035 5 | 0.047 1 | 0.035 9 | 0.049 7 |
组合权重 | 0.039 0 | 0.037 4 | 0.047 2 | 0.055 2 | 0.053 9 | 0.031 3 | 0.062 2 | 0.076 4 | 0.042 2 | 0.067 9 | 0.036 3 | 0.061 6 |
指标 | U31 | U32 | U33 | U34 | U35 | U36 | U37 | U38 | U41 | U42 | U43 | U44 |
G1 | 0.012 6 | 0.012 1 | 0.014 5 | 0.026 3 | 0.027 9 | 0.018 1 | 0.023 1 | 0.041 | 0.009 4 | 0.014 5 | 0.036 | 0.030 8 |
EW | 0.030 6 | 0.029 4 | 0.031 5 | 0.031 7 | 0.031 2 | 0.056 9 | 0.051 1 | 0.050 5 | 0.050 3 | 0.058 5 | 0.032 5 | 0.061 8 |
组合权重 | 0.021 5 | 0.020 6 | 0.022 9 | 0.029 0 | 0.029 5 | 0.037 2 | 0.036 9 | 0.045 7 | 0.029 6 | 0.036 2 | 0.034 3 | 0.046 1 |
表5
T1线路地铁运营安全风险综合确定度
二级指标 | 云模型综合确定度 | ||||
---|---|---|---|---|---|
低 (V1) | 较低 (V2) | 中等 (V3) | 较高 (V4) | 高 (V5) | |
城市人口因 素(U2) | 0.000 1 | 0.007 9 | 0.064 2 | 0.000 8 | 0.000 0 |
地铁设备设 施(U3) | 0.004 4 | 0.000 0 | 0.050 2 | 0.000 0 | 0.000 0 |
地铁安全管 理(U4) | 0.038 3 | 0.031 1 | 0.006 6 | 0.000 0 | 0.000 2 |
地铁环境因 素(U5) | 0.017 5 | 0.000 0 | 0.024 5 | 0.000 0 | 0.000 0 |
T1线路 地铁 | 0.013 6 | 0.009 4 | 0.039 1 | 0.000 2 | 0.000 1 |
[1] |
黄宏伟, 叶永峰, 胡群芳. 地铁运营安全风险管理现状分析[J]. 中国安全科学学报, 2008, 18(7): 55-62.
|
|
|
[2] |
潘科, 石剑云. 变权和相对差异函数在地铁运营安全评价中的应用[J]. 铁道学报, 2009, 31(3): 20-25.
|
|
|
[3] |
潘科, 王洪德, 石剑云. 多级可拓评价方法在地铁运营安全评价中的应用[J]. 铁道学报, 2011, 33(5): 14-19.
|
|
|
[4] |
陆莹, 李启明, 周志鹏. 基于模糊贝叶斯网络的地铁运营安全风险预测[J]. 东南大学学报:自然科学版, 2010, 40(5): 1110-1114.
|
|
|
[5] |
曾明华, 王旭, 王转敏, 等. 基于模糊多态贝叶斯网络的地铁运营风险评价方法[J]. 城市轨道交通研究, 2019, 22(5): 28-33.
|
|
|
[6] |
贾水库, 温晓虎, 林大建, 等. 基于层次分析法地铁运营系统安全评价技术的研究[J]. 中国安全科学学报, 2008, 18(5): 137-141.
|
|
|
[7] |
侯靖宇. 基于熵权法的地铁运营安全模糊综合评价方法研究[J]. 隧道建设, 2016, 36(12): 1465-1470.
|
|
|
[8] |
doi: 10.1016/j.tra.2021.03.010 |
[9] |
doi: 10.1016/j.ssci.2016.10.010 |
[10] |
周雪, 左忠义, 程伟. 基于组合赋权云模型的铁路旅客运输安全评价[J]. 中国安全科学学报, 2020, 30(增1):158-164.
|
doi: 10.16265/j.cnki.issn1003-3033.2020.S1.028 |
|
[11] |
杨文东, 杨栋, 谢全敏. 基于云模型的边坡风险评价方法及其应用[J]. 华中科技大学学报:自然科学版, 2018, 46(4): 30-34.
|
|
|
[12] |
doi: 10.1016/j.cnsns.2020.105540 |
[13] |
doi: 10.3390/app11083652 |
doi: 10.3390/app11083652 |
|
[14] |
王学军, 郭亚军. 基于G1法的判断矩阵的一致性分析[J]. 中国管理科学, 2006, 14(3): 65-70.
|
|
|
[15] |
刘建, 郑双忠, 邓云峰, 等. 基于G1法的应急能力评价指标权重的确定[J]. 中国安全科学学报, 2006, 16(1): 30-33.
|
|
|
[16] |
王刚, 商荦真, 刘学麟, 等. 采用AHP-熵权法的巷道启封中毒窒息致因研究[J]. 中国安全科学学报, 2021, 31(7):187-192.
doi: 10.16265/j.cnki.issn 1003-3033.2021.07.026 |
doi: 10.16265/j.cnki.issn 1003-3033.2021.07.026 |
|
[17] |
魏久传, 许玉阳, 谢道雷, 等. 基于距离函数组合赋权法的突水危险性评价[J]. 中国矿业, 2021, 30(4): 162-167.
|
|
|
[18] |
李浩然, 王子恒, 杨起帆, 等. 复杂网络下地铁灾害链演化模型与风险分析[J]. 中国安全科学学报, 2021, 31(11):141-147.
doi: 10.16265/j.cnki.issn 1003-3033.2021.11.020 |
doi: 10.16265/j.cnki.issn 1003-3033.2021.11.020 |
|
[19] |
GB/T50438—2007,地铁运营安全评价标准[S].
|
GB/T50438-2007,Standard for the operation safety assessment of existing metro[S].
|
|
[20] |
李志刚, 徐平, 王国利. 地铁运营系统安全风险辨识流程及危险因素研究[J]. 中国安全生产科学技术, 2019, 15(增1): 34-37.
|
|
|
[21] |
GB50157—2013,地铁设计规范[S].
|
GB50157—2013,Code for Design Metro[S].
|
|
[22] |
梅潇, 王鑫. 基于云模型和EAHP的起重机金属结构健康评价[J]. 机械设计与研究, 2020, 36(6):200-204.
|
|
|
[23] |
胥旋, 钟茂华, 史聪灵, 等. 基于动态分级法的地铁设备设施风险评价研究[J]. 中国安全科学学报, 2013, 23(7): 61-66.
|
|
[1] | 邓勇亮, 张莹, 罗丽, 李扬, 林陵娜. 基于本体技术的地铁运营安全风险管理研究[J]. 中国安全科学学报, 2023, 33(S1): 35-41. |
[2] | 吴海涛, 刘月, 杜彗敏. 小样本条件下地铁运营事故致因推理模型[J]. 中国安全科学学报, 2023, 33(3): 134-140. |
[3] | 黄亚江, 李书全, 李益锌, 郑涵. 基于DEMATEL-ISM-ANP的地铁运营安全韧性综合评价[J]. 中国安全科学学报, 2022, 32(6): 171-177. |
[4] | 尹一雄. 基于数量化理论的露天矿安全风险评价[J]. 中国安全科学学报, 2021, 31(S1): 86-91. |
[5] | 冯子健. 基于BP神经网络的铁路货运安全风险评价研究[J]. 中国安全科学学报, 2018, 28(S1): 178-185. |
[6] | 史俊伟, 孟祥瑞, 吴昌友, 贾晓珊. GRA-SPA熵权决策模型在冲击地压风险评价中的应用[J]. 中国安全科学学报, 2018, 28(6): 173-178. |
[7] | 胥旋,钟茂华,史聪灵,何理. 基于动态分级法的地铁设备设施风险评价研究[J]. 中国安全科学学报, 2013, 23(7): 61-. |
[8] | 汪志红,王斌会. 基于城市地铁实证分析的突发事件风险发展趋势评价模型研究[J]. 中国安全科学学报, 2010, 20(9): 166-. |
[9] | 贾水库,温晓虎,林大建,蒋仲安. 基于层次分析法地铁运营系统安全评价技术的研究[J]. 中国安全科学学报, 2008, 18(5): 137-. |
[10] | 代宝乾,汪彤,蒋玉琨,丁辉. 地铁运营系统安全综合评价指标体系研究[J]. 中国安全科学学报, 2006, 16(12): 9-. |
[11] | 代宝乾,汪彤,丁辉,刘艳. 地铁运营系统危险有害因素辨识分析[J]. 中国安全科学学报, 2005, 15(10): 80-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||