[1] |
CHAURASIYA P K, WARUDKAR V, AHMED S. Wind energy development and policy in India: a review[J]. Energy Strategy Reviews, 2019, 24: 342-357.
doi: 10.1016/j.esr.2019.04.010
|
[2] |
GUNEY M S. Solar power and application methods[J]. Renewable & Sustainable Energy Reviews, 2016, 57: 776-785.
|
[3] |
刘兰胜. 磷酸铁锂电池应用现状及发展趋势[J]. 电池工业, 2021, 25(5): 263-265.
|
|
LIU Lansheng. Application status and development trend of lithium iron phosphate battery[J]. Chinese Battery Industry, 2021, 25(5): 263-265.
|
[4] |
张乃平, 马永飞, 杨孟霖, 等. 锂电池火灾灭火技术研究综述[J]. 中国安全生产科学技术, 2022, 18(7): 47-53.
|
|
ZHANG Naiping, MA Yongfei, YANG Menglin, et al. Review on fire extinguishing technology research of lithium battery[J]. Journal of Safety Science and Technology, 2022, 18(7): 47-53.
|
[5] |
陈现涛, 张旭, 赵一帆, 等. 不同外热功率下18650锂离子电池热失控特性[J]. 中国安全生产科学技术, 2021, 17(9): 139-144.
|
|
CHEN Xiantao, ZHANG Xu, ZHAO Yifan, et al. Thermal runaway characteristics of 18650 lithium-ion battery under different external thermal powers[J]. Journal of Safety Science and Technology, 2021, 17(9): 139-144.
|
[6] |
张青松, 赵子恒, 白伟. 过充条件下三元锂离子电池热安全性分析[J]. 消防科学与技术, 2020, 39(5): 713-717.
|
|
ZHANG Qingsong, ZHAO Ziheng, BAI Wei. Thermal safety analysis on ternary lithium ion battery under overcharge conditions[J]. Fire Science and Technology, 2020, 39(5): 713-717.
|
[7] |
李亚楠, 潘芳芳, 赵金保. 锂离子电池针刺安全性的研究进展[J]. 电池, 2022, 52(2): 228-231.
|
|
LI Ya'nan, PAN Fangfang, ZHAO Jinbao. Research progress in nail penetration safety for Li-ion battery[J]. Battery Bimonthly, 2022, 52(2): 228-231.
|
[8] |
张伟, 郝朝龙, 刘添添, 等. 航空压力环境对锂离子电池热解气体爆炸极限影响[J]. 中国安全生产科学技术, 2022, 18(11): 155-162.
|
|
ZHANG Wei, HAO Chaolong, LIU Tiantian, et al. Infiuence of aviation pressure environment on explosion limit of pyrolysis gas from lithium-ion batteries[J]. Journal of Safety Science and Technology, 2022, 18(11): 155-162.
|
[9] |
陈现涛, 赵一帆, 张旭, 等. 不同外部热源及气压对软包装锂离子电池热失控影响[J]. 消防科学与技术, 2022, 41(1): 15-20.
|
|
CHEN Xiantao, ZHAO Yifan, ZHANG Xu, et al. Influence of different external heat power and air pressure on thermal runaway of pouch lithium-ion batteries[J]. Fire Science and Technology, 2022, 41(1): 15-20.
|
[10] |
徐亮. 三元锂离子电池直径和荷电状态对热失控传播影响研究[J]. 消防科学与技术, 2022, 41(7): 899-904.
|
|
XU Liang. Study on the influence of ternary lithium-ion battery diameter and state of charge on thermal runaway propagation[J]. Fire Science and Technology, 2022, 41(7): 899-904.
|
[11] |
梅文昕, 段强领, 王青山, 等. 大型磷酸铁锂电池高温热失控模拟研究[J]. 储能科学与技术, 2021, 10(1): 202-209.
|
|
MEI Wenxin, DUAN Qiangling, WANG Qingshan, et al. Thernal runaway simulation of large-scale lithium iron phosphate battery at elevated temperatures[J]. Energy Storage Science and Technology, 2021, 10(1): 202-209.
|
[12] |
JIA Yikai, UDDIN M, LI Yangxing, et al. Thermal runaway propagation behavior within 18,650 lithium-ion battery packs: a modeling study[J]. Journal of Energy Storage, 2020, 31:DOI: 10.1016/j.est.2020.101668.
|
[13] |
韩路豪, 王子阳, 何骁龙, 等. 细水雾释放策略对大容量三元锂离子电池热失控火灾抑制效果的实验研究[J]. 储能科学与技术, 2023, 12(5):1664-1674.
|
|
HAN Luhao, WANG Ziyang, HE Xiaolong, et al. The effect of water mist strategies on thermal runaway fire suppression of large-capacity NCM lithium-ion battery[J]. Energy Storage Science and Technology, 2023, 12(5):1664-1674.
|
[14] |
黄强, 陶风波, 刘洋, 等. 气液灭火剂对磷酸铁锂电池模组灭火能效研究[J]. 中国安全科学学报, 2020, 30(3): 53-59.
doi: 10.16265/j.cnki.issn1003-3033.2020.03.009
|
|
HUANG Qiang, TAO Fengbo, LIU Yang, et al. Study on performance of gas-liquid extinguishing agent for lithium iron phosphate battery modules[J]. China Safety Science Journal, 2020, 30(3): 53-59.
doi: 10.16265/j.cnki.issn1003-3033.2020.03.009
|
[15] |
张作睿, 张国维, 朱国庆, 等. 水凝胶灭火剂对磷酸铁锂电池组灭火效能研究[J]. 中国安全科学学报, 2023, 33(1): 161-168.
doi: 10.16265/j.cnki.issn1003-3033.2023.01.0083
|
|
ZHANG Zuorui, ZHANG Guowei, ZHU Guoqing, et al. Research on fire-extinguishing performance of hydrogel fire extingguishing agent on lithium iron phosphate battery pack[J]. China Safety Science Journal, 2023, 33(1): 161-168.
doi: 10.16265/j.cnki.issn1003-3033.2023.01.0083
|
[16] |
HUANG Zonghou, LIU Pengjie, DUAN Qiangling, et al. Experimental investigation on the cooling and suppression effects of liquid nitrogen on the thermal runaway of lithium ion battery[J]. Journal of Power Sources, 2021, 495:DOI: 10.1016/j.jpowsour.2021.229795.
|
[17] |
WANG Zhirong, WANG Kuo, WANG Junling, et al. Inhibition effect of liquid nitrogen on thermal runaway propagation of lithium ion batteries in confined space[J]. Journal of Loss Prevention in the Process Industries, 2022, 79:DOI: 10.1016/J.JLP.2022.104853.
|
[18] |
CAO Yanfang, WANG Kuo, WANG Zhirong, et al. Utilization of liquid nitrogen as efficient inhibitor upon thermal runaway of 18650 lithium ion battery in open space[J]. Renewable Energy, 2023, 206: 1097-1105.
doi: 10.1016/j.renene.2023.02.117
|
[19] |
HUANG Zonghou, ZHANG Yue, SONG Laifang, et al. Preventing effect of liquid nitrogen on the thermal runaway propagation in 18650 lithium ion battery modules[J]. Process Safety and Environmental Protection, 2022, 168: 42-53.
doi: 10.1016/j.psep.2022.09.044
|
[20] |
王庭华, 翟宏举, 秦鹏, 等. 模组箱体空间内磷酸铁锂电池热失控及其传播行为研究[J]. 火灾科学, 2022, 31: 25-34.
|
|
WANG Tinghua, ZHAI Hongju, QIN Peng, et al. Study on the thermal runaway and its propagation behaviors of lithium iron phosphate battery in module box space[J] Fire Safety Science, 2022, 31: 25-34.
|