中国安全科学学报 ›› 2024, Vol. 34 ›› Issue (6): 1-9.doi: 10.16265/j.cnki.issn1003-3033.2024.06.1562

• 安全社会科学与安全管理 •    下一篇

管制员个体工作负荷多维量化研究

王莉莉1(), 顾秋丽2,3,**()   

  1. 1 中国民航大学 空中交通管理学院,天津 300300
    2 中国民航大学 安全科学与工程学院,天津 300300
    3 中国民航大学 计算机科学与技术学院,天津 300300
  • 收稿日期:2023-12-13 修回日期:2024-03-16 出版日期:2024-06-28
  • 通讯作者:
    **顾秋丽(1988—),女,辽宁锦州人,硕士,讲师,主要从事空中交通人为因素方面的研究。E-mail:
  • 作者简介:

    王莉莉 (1973—),女,陕西兴平人,博士,教授,主要从事空中交通人为因素、空域规划等方面的研究。E-mail:

  • 基金资助:
    国家自然科学基金委员会与中国民用航空局联合项目(U1633124)

Study on multidimensional quantification of individual workload of controllers

WANG Lili1(), GU Qiuli2,3,**()   

  1. 1 College of Air Traffic Management, Civil Aviation University of China, Tianjin 300300, China
    2 College of Safety Science and Engineering, Civil Aviation University of China, Tianjin 300300, China
    3 College of Computer Science and Technology, Civil Aviation University of China, Tianjin 300300, China
  • Received:2023-12-13 Revised:2024-03-16 Published:2024-06-28

摘要:

为提高空管系统高效运行,聚焦管制员个体工作负荷建立量化模型;首先设计试验采集一线16名区域管制员的岗前与岗后各项指标数据,根据测试数据变化,选择出敏感变量,描述个体工作负荷;其次建立包含心理感知负荷、生理反应负荷与脑力工作负荷3个维度的综合评估指标体系,构建管制员个体工作负荷指数模型;然后通过熵权-客观组合法求解个体工作负荷指数最优权重,最终得出管制员个体工作负荷量化模型;最后进一步根据管制员个体工作负荷综合指数进行K-Means聚类分析,结果表明:管制员因个体不同岗后工作负荷存在差异。依据个体工作负荷指数大小,管制员可分为3类,A类管制员数量占总人数50%,岗后个体工作负荷增长最小;B类管制员数量占总人数43.75%,岗后负荷增长居中;C类管制员数量占总人数6.25%,岗后负荷增长最大,与教员对管制员能力的评分结果一致。

关键词: 空中交通管制员, 个体工作负荷, 配对样本T检验, 熵权-客观组合法, K-Means聚类

Abstract:

In order to enhance the efficacious operation of the air traffic control system, a quantitative model was established by focusing on the individual load of controllers. Tests were designed to collect pre-service and post-service data on various indicators from 16 area controllers in the front line. Sensitive variables were selected to describe individual loads based on changes in test data. A comprehensive assessment index system was established that included three dimensions: psychological perception load, physiological reaction load, and mental workload. The controller individual load index model was developed. The optimal weights of the individual load index were determined by the the entropy-critic combination weighting method. The quantitative model of the controller's individual workload was finally derived. Further K-Means clustering analysis was performed based on the controller's individual load composite index. There were evident discrepancies in the workload changes of the controllers due to different individual postures. The results indicate that the post-post individual workload changes of the controllers could be classified into three distinct groups. The first group, comprising 50% of the total number of controllers, exhibited the smallest post-post individual workload growth. The second group, accounting for 43.75% of the total number of controllers, exhibited a moderate post-post individual workload growth. The third group, comprising 6.25% of the total number of controllers, exhibited the largest post-post individual workload increase. These findings align with the instructor's ratings of controller competence.

Key words: air traffic controller, individual workload, paired-sample T-test, entropy-critic combination weighting method, K-Means cluster analysis

中图分类号: