[1] |
MENOUAR H, GUVENC I, AKKAYA K, et al. UAV-enabled intelligent transportation systems for the smart city: applications and challenges[J]. IEEE Communications Magazine, 2017, 55(3): 22-28.
|
[2] |
李诚龙, 屈文秋, 李彦冬, 等. 面向eVTOL航空器的城市空中运输交通管理综述[J]. 交通运输工程学报, 2020, 20(4): 35-54.
|
|
LI Chenglong, QU Wenqiu, LI Yandong, et al. Overview of traffic management of urban air mobility (UAM) with eVTOL aircraft[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 35-54.
|
[3] |
绿色航空制造业发展纲要(2023—2035年)[EB/OL].(2023-10-10). https://www.gov.cn/zhengce/zhengceku/202310/content_6908243.htm.
|
[4] |
SCHWEIGER A, ANNIGHOEFER B, REICH M, et al. Classification for avionics capabilities enabled by artificial intelligence[C]. 2021 IEEE/AIAA 40th Digital Avionics Systems Conference (DASC), 2021 :1-10.
|
[5] |
DEY S, LEE S W. Multilayered review of safety approaches for machine learning-based systems in the days of AI[J]. Journal of Systems and Software, 2021, 176: DOI: 10.1016/j.jss.2021.110941.
|
[6] |
董磊, 刘嘉琛, 陈曦, 等. 面向适航符合性的智能航电系统认证研究进展[J]. 航空工程进展, 2023, 14(3): 26-40.
|
|
DONG Lei, LIU Jiachen, CHEN Xi, et al. Research progress of AI-based avionics system certification for airworthiness compliance[J]. Advances in Aeronautical Science and Engineering, 2023, 14(3): 26-40.
|
[7] |
HE Yuning, SCHUMANN J, YU Huafeng. Toward runtime assurance of complex systems with AI components[C]. PHM Society European Conference, 2022: 166-174.
|
[8] |
EASA. Concepts of design assurance for neural networks (CoDANN) II[R], 2021.
|
[9] |
SCHIRMER S, TORENS C, DAUER J C, et al. A hierarchy of monitoring properties for autonomous systems[C]. AIAA SCITECH 2023 Forum, 2023: 2588-2601.
|
[10] |
COFER D, AMUNDSON I, SATTIGERI R, et al. Run-time assurance for learning-based aircraft taxiing[C]. 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC), 2020: 1-9.
|
[11] |
GHORI S, KHAMVILAI T, FERON E, et al. Runtime assurance for distributed avionics architecture[C]. 2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC), 2022: 1-6.
|
[12] |
KIRKENDOLL Z. Automatic ground collision avoidance and loss of control prevention systems for general aviation using run-time assurance[C]. 2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC), 2022: 1-10.
|
[13] |
ISO/PAS 21448-2019, Safety of the intend-ed functionality[S].
|
[14] |
罗崎瑞, 张道文, 周华, 等. 面向智能汽车预期功能安全的驾驶场景评价[J]. 中国安全科学学报, 2022, 32(8): 140-145.
doi: 10.16265/j.cnki.issn1003-3033.2022.08.1768
|
|
LUO Qirui, ZHANG Daowen, ZHOU Hua, et al. Evaluation on driving scenarios for safety of intended functionality of intelligent vehicles[J]. China Safety Science Journal, 2022, 32(8): 140-145.
doi: 10.16265/j.cnki.issn1003-3033.2022.08.1768
|
[15] |
董陇军, 王加闯. 智能安全人机工程学学科建设及内容体系研究[J]. 中国安全科学学报, 2022, 32(3): 1-8.
doi: 10.16265/j.cnki.issn1003-3033.2022.03.001
|
|
DONG Longjun, WANG Jiachuang. Research on discipline construction and content system of intelligent safety ergonomics[J] China Safety Science Journal, 2022, 32(3): 1-8.
doi: 10.16265/j.cnki.issn1003-3033.2022.03.001
|
[16] |
HAARNOJA T, ZHOU A, HARTIKAINEN K, et al. Soft actor-critic algorithms and applications[J]. arXiv Preprint, 2018:DOI: 10.48550/arXiv.1812.05905.
|
[17] |
COOPER J K, SCHIERMAN J D. A sense and avoid system for unmanned aircraft in formation flight[C]. AIAA Guidance, Navigation, and Control Conference, 2014: 967-986.
|