中国安全科学学报 ›› 2024, Vol. 34 ›› Issue (3): 192-199.doi: 10.16265/j.cnki.issn1003-3033.2024.03.0266

• 公共安全 • 上一篇    下一篇

复杂网络城市空中交通生态下eVTOL运行风险演化分析

袁乐平(), 谷泽坤, 李东琪   

  1. 中国民航大学 安全科学与工程学院,天津 300300
  • 收稿日期:2023-09-22 修回日期:2023-12-27 出版日期:2024-03-28
  • 作者简介:

    袁乐平 (1978—),男,云南泸西人,硕士,副研究员,主要从事空中交通安全技术方面的研究。E-mail:

  • 基金资助:
    民航安全能力建设项目(ASSA2020/12); 中国民航大学学科建设经费资助项目(230123006002)

Risk evolution analysis of eVTOL operation in UAM ecosystem based on complex networks

YUAN Leping(), GU Zekun, LI Dongqi   

  1. College of Safety Science and Engineering, Civil Aviation University of China, Tianjin 300300, China
  • Received:2023-09-22 Revised:2023-12-27 Published:2024-03-28

摘要:

为明确城市空中交通(UAM)生态下电动垂直起降飞行器(eVTOL)风险因素间的关联性,并探究各类风险因素对风险防控的影响,采用复杂网络理论建立风险演化模型,以国内外无人机事故数据库和通用航空事故统计结果为基础,结合eVTOL在城市低空场景下的运行特点,从人-机-环角度确定35类风险因素和10类危险事件;采用Gephi软件构建网络模型,采用节点度、接近度中心性、介数中心性与网页排序(PR)算法综合评估关键节点,采用边介数评估关键边,确定关键风险传播路径;以降低系统风险为目标,提出断链减灾措施,通过网络效率指标衡量断链控制后的系统安全性。研究结果表明:UAM生态下,eVTOL风险因素关联性较强,且存在8条关键风险传播链。阻断关键人为因素、关键系统技术故障因素及关键中间危险事件3种断链方案,分别使系统安全性提高4.74%、16.21%、18.10%。

关键词: 复杂网络, 城市空中交通(UAM), 电动垂直起降飞行器(eVTOL), 运行风险, 断链控制

Abstract:

In order to clarify the correlation of eVTOL risk factors, and explore their impact on risk prevention and control in the UAM ecosystem, complex network theory was used to establish a risk evolution model. Based on the UAV accident database at home and abroad and the statistics of general aviation accidents, combined with the operation characteristics of eVTOL in urban low-altitude scenes, 35 types of risk factors and 10 types of dangerous events were identified from the perspective of human-machine-environment. Gephi software was used to construct the network model, and the key nodes were evaluated comprehensively by the node degree, proximity centrality, internode centrality and PageRank(PR) algorithm. The key edges were evaluated by the internode number, so as to determine the key risk propagation path. In order to reduce the system risk, the measures to reduce the chain breaking disaster were proposed, and the system safety after chain breaking control was measured by network efficiency index. The results show that there are strong correlations among the eVTOL risk factors in the UAM ecosystem, and there are eight key risk transmission chains. The system safety is improved by 4.74%, 16.21% and 18.10% by blocking key human factors, key system technical failure factors and key intermediate dangerous events, respectively.

Key words: complex network, urban air mobility (UAM), electric vertical takeoff and landing (eVTOL), operational risk, broken chain control

中图分类号: