[1] |
中国城市燃气协会安全管理委员会. 全国燃气事故分析报告(2021年·第二季度报告暨半年综述)[R], 2021.
|
[2] |
李新宏, 张毅, 韩子月, 等. 天然气管道失效致因与事故链模型研究[J]. 油气田地面工程, 2021, 40(4):1-7.
|
|
LI Xinhong, ZHANG Yi, HAN Ziyue, et al. Study on failure causes and catastrophic chain model of natural gas pipeline[J]. Oil-Gas Field Surface Engineering, 2021, 40(4):1-7.
|
[3] |
|
|
ZHANG Peng, YANG Zongqiang, SHEN Hao, et al. Risk evaluation of urban gas pipelines based on grey relevance theory and DEMATEL[J/OL]. Journal of Safety and Environment,1-9[2023-04-22].DOI: 10.13637/j.issn.1009-6094.2022.1018.
|
[4] |
王新颖, 宋兴帅, 杨泰旺, 等. LS-SVM模型在燃气管道风险评估中的应用[J]. 消防科学与技术, 2017, 36(11):1598-1601.
|
|
WANG Xinying, SONG Xingshuai, YANG Taiwang, et al. Application of LS-SVM model in the risk assessment of urban gas pipeline[J]. Fire Science and Technology, 2017, 36(11):1598-1601.
|
[5] |
HASSAN S, WANG J, KONOVAS C, et al. An assessment of causes and failure likelihood of cross-country pipelines under uncertainty using Bayesian networks[J]. Reliability Engineering and System Safety, 2022, 218(12):1-17.
|
[6] |
ZHANG Yan, WENG Wengang. Bayesian network model for buried gas pipeline failure analysis caused by corrosion and external interference[J]. Reliability Engineering & System Safety, 2020, 2039(1):1-11.
|
[7] |
ZHOU Zhipeng, LIU Song, QI Haonan. Mitigating subway construction collapse risk using Bayesian network modeling[J]. Automation in Construction, 2022, 143(9):1-20.
|
[8] |
ZHOU Jin, XU Weixiang, GUO Xin, et al. A method for modeling and analysis of directed weighted accident causation network (DWACN)[J]. Physica A: Statistical Mechanics and its Applications, 2015, 437(6):263-277.
doi: 10.1016/j.physa.2015.05.112
|
[9] |
JUDEA P. Embracing causality in default reasoning[J]. Artificial Intelligence, 1988, 35(2):259-271.
doi: 10.1016/0004-3702(88)90015-X
|
[10] |
王喆, 孔维磊, 方丹辉, 等. 基于贝叶斯网络的城镇洪涝应急情景推演研究[J]. 中国安全科学学报, 2021, 31(6):182-188.
doi: 10.16265/j.cnki.issn 1003-3033.2021.06.024
|
|
WANG Zhe, KONG Weilei, FANG Danhui, et al. On urban flood and waterlog emergency scenario deduction based on Bayesian network[J]. China Safety Science Journal, 2021, 31(6):182-188.
doi: 10.16265/j.cnki.issn 1003-3033.2021.06.024
|
[11] |
HENRION M. Some practical issues in constructing belief networks, Uncertainty in Artificial Intelligence 3[M]. North Holland: Elsevier Sciences Publisher, 1988:1-3.
|
[12] |
李聪, 徐子烜, 王雨情, 等. 城市燃气管网泄漏事故分析知识图谱构建及应用研究[J]. 中国安全生产科学技术, 2022, 18(10):5-12.
|
|
LI Cong, XU Zixuan, WANG Yuqing, et al. Construction and application of knowledge graph for leakage accident analysis of city gas pipeline networks[J]. Journal of Safety Science and Technology, 2022, 18(10):5-12.
|
[13] |
沈阳市应急管理局. 于洪区洪湖街“6·24”燃气爆燃事故调查报告[R], 2021.
|
[14] |
郭章林, 王勇华, 李富梅. 城市燃气管道检测周期研究[J]. 油气储运, 2009, 28(3):25-28.
|
|
GUO Zhanglin, WANG Yonghua, LI Fumei. Study on inspection cycles of city gas pipelines[J]. Oil and Gas Storage and Transportation, 2009, 28(3):25-28.
|
[15] |
十堰市应急管理局. 湖北十堰"6·13"重大燃气爆炸事故调查报告公布[R], 2021.
|
[16] |
葛庭均. 神经科学实验与SNA相结合的创业投资者对创业者的信任认知机理和行为规律研究[D]. 哈尔滨: 哈尔滨工程大学, 2015.
|
|
GE Tingjun. Cognitive mechanism of trust and rule of behavior on venture capitalist to entrepreneur: a neuroscience experiment and social network analysis[D]. Harbin: Harbin Engineering University, 2015.
|
[17] |
鲁义, 伍江乐, 邵淑珍, 等. 基于贝叶斯网络的危化品道路运输事故推理模型[J]. 中国安全科学学报, 2022, 32(3):174-182.
doi: 10.16265/j.cnki.issn1003-3033.2022.03.024
|
|
LU Yi, WU Jiangle, SHAO Shuzhen, et al. Prediction model for road transport accidents of hazardous chemicals based on Bayesian network[J]. China Safety Science Journal, 2022, 32(3):174-182.
doi: 10.16265/j.cnki.issn1003-3033.2022.03.024
|
[18] |
MATEO V, FRANCESCO C, BARBARA M, et al. Thermodynamic challenges for CO2 pipelines design: a critical review on the effects of impurities, water content, and low temperature[J]. International Journal of Greenhouse Gas Control, 2022, 114(2):1-11.
|
[19] |
陈军, 兀亚伟, 李垣志, 等. 基于动态贝叶斯网络的燃气管网燃爆风险分析[J]. 北京理工大学学报, 2021, 41(7):696-705.
|
|
CHEN Jun, WU Yawei, LI Yuanzhi, et al. Risk analysis of burning and explosion of gas pipeline network based on dynamic Bayesian network[J]. Transactions of Beijing Institute of Technology, 2021, 41(7):696-705.
|
[20] |
AGNIESZKA O, MSREK J D, HANNA W. Learning Bayesian network parameters from small data sets: application of Noisy-OR gates[J]. International Journal of Approximate Reasoning, 2001, 27:165-182.
doi: 10.1016/S0888-613X(01)00039-1
|
[21] |
FALLET F G, WEBER P, SIMON C, et al. Evidential network-based extension of Leaky Noisy-OR structure for supporting risks analyses[J]. IFAC Proceedings Volumes, 2012, 45(20):672-677.
|
[22] |
QIAO Qiao, CHENG Guangxu, WU Wei, et al. Failure analysis of corrosion at an inhomogeneous welded joint in a natural gas gathering pipeline considering the combined action of multiple factors[J]. Engineering Failure Analysis, 2016, 64(6):126-143.
doi: 10.1016/j.engfailanal.2016.02.015
|
[23] |
泸州市人民政府. 四川泸州"5.29"天然气管道爆炸事故[R], 2004.
|
[24] |
陈伟, 杨主张, 熊威, 等. 装配式建筑工程施工安全风险传导DEMATEL-BN模型[J]. 中国安全科学学报, 2020, 30(7):1-6.
doi: 10.16265/j.cnki.issn1003-3033.2020.07.001
|
|
CHEN Wei, YANG Zhuzhang, XIONG Wei, et al. Research on DEMATEL-BN model of construction risk transmission for prefabricated building[J]. China Safety Science Journal, 2020, 30(7):1-6.
doi: 10.16265/j.cnki.issn1003-3033.2020.07.001
|
[25] |
|
|
LI Cong, LU Yifei, CHEN Chen, et al. Analysis of emergency rescue characteristics and evaluation of rescue capability for accidents associated with urban gas pipeline networks[J/OL]. Journal of Tsinghua University:Science & Technology, 2023, 63(10):1 537-1 547.DOI: 10.16511/j.cnki.qhdxxb.2023.22.026.
|