中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (3): 92-98.doi: 10.16265/j.cnki.issn1003-3033.2025.03.0134

• 安全工程技术 • 上一篇    下一篇

多策略改进SSA优化KELM的边坡稳定性预测模型

祁云1,2,3(), 薛凯隆4,5,**(), 李绪萍1,2,4, 汪伟1,2,3, 白晨浩5, 吉准泽6   

  1. 1 内蒙古科技大学 矿业与煤炭学院,内蒙古 包头 014010
    2 内蒙古自治区矿业工程重点实验室,内蒙古 包头 014010
    3 内蒙古自治区煤炭安全开采与利用工程技术研究中心,内蒙古 包头 014010
    4 内蒙古煤炭绿色开采与绿色利用协同创新中心,内蒙古 包头 014010
    5 山西大同大学 煤炭工程学院,山西 大同 037000
    6 内蒙古科技大学 材料与冶金学院,内蒙古 包头 014010
  • 收稿日期:2024-10-20 修回日期:2024-12-28 出版日期:2025-03-28
  • 通信作者:
    ** 薛凯隆(2000—),男,山西吕梁人,硕士研究生,主要研究方向为矿山灾害监测预警、应急技术与管理。E-mail:
  • 作者简介:

    祁 云 (1988—),男,安徽淮北人,博士,副教授,硕士生导师,主要从事矿井灾害防治、安全评价、应急技术与管理等方面的研究。E-mail:

    李绪萍,教授;

    汪 伟,副教授

  • 基金资助:
    国家自然科学基金地区基金资助(52464020); 内蒙古自然科学基金资助(2024LHMS05012); 山西省高等学校科技创新计划项目(2022L448); 山西省高等学校科技创新计划项目(2022L449); 山西大同大学研究生教育创新项目(23CX49)

Slope stability prediction model based on multi-strategy improved SSA for optimizing KELM

QI Yun1,2,3(), XUE Kailong4,5,**(), LI Xuping1,2,4, WANG Wei1,2,3, BAI Chenhao5, JI Zhunze6   

  1. 1 School of Mining and Coal, Inner Mongolia University of Science and Technology, Baotou Inner Mongolia 014010, China
    2 Inner Mongolia Key Laboratory of Mining Engineering, Baotou Inner Mongolia 014010, China
    3 Inner Mongolia Research Center for Coal Safety Mining and Utilization Engineering and Technology, Baotou Inner Mongolia 014010, China
    4 Inner Mongolia Cooperative Innovation Center for Coal Green Mining and Green Utilization, Baotou Inner Mongolia 014010, China
    5 School of Coal Engineering, Shanxi Datong University, Datong Shanxi 037000, China
    6 School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou Inner Mongolia 014010, China
  • Received:2024-10-20 Revised:2024-12-28 Published:2025-03-28

摘要:

为了能够更加精准地预测边坡稳定状态,从而有效预防边坡失稳事故,提出改进麻雀搜索算法(ISSA)与核极限学习机(KELM)相结合的ISSA-KELM边坡稳定性预测模型。首先,将边坡失稳特征中的容重、黏聚力等6个主要影响因素作为预测指标,建立边坡稳定性评价数据集;其次,引入Sine混沌映射、Levy飞行策略、动态自适应权重以及融合最优爆炸策略和反向学习改进麻雀搜索算法(SSA),以提高其全局搜索能力和稳定性;而后利用ISSA优化KELM中的核参数ψ和正则化系数C,提升其预测精度,同时避免KELM出现过拟合现象;最后,对比分析ISSA-KELM模型与SSA-KELM、粒子群优化算法(PSO)-KELM以及PSO-支持向量机(SVM)模型的预测结果,并将ISSA-KELM模型应用于山西某露天煤矿。结果表明:ISSA-KELM模型的准确率、精确率、召回率和F1分数分别达到了0.945 9、1、0.866 7和0.929,均优于SSA-KELM、PSO-KELM和PSO-SVM模型,模型的预测结果与实际值最为接近,表明所建ISSA-KELM模型具有较强的泛化能力。

关键词: 边坡稳定性, 预测模型, 改进麻雀搜索算法(ISSA), 核极限学习机(KELM), 预测指标, 混淆矩阵

Abstract:

In order to predict the slope state more accurately and effectively prevent the slope instability accident, an improved ISSA-KELM slope stability prediction model was proposed. Firstly, six main factors such as bulk density and cohesion in slope instability characteristics were used as prediction indexes to establish a data set for slope stability evaluation. Secondly, SSA was enhanced by incorporating Sine chaotic mapping, Levy flight strategy, dynamic adaptive weights, and fusion of optimal explosion strategy and reverse learning. These improvements aimed at enhancing the global search capability and stability of SSA. Subsequently, ISSA was employed to optimize the kernel parameter ψ and regularization coefficient C in KELM for improved prediction accuracy while avoiding overfitting issues associated with KELM. The results show that the accuracy rate, precision, recall rate and F1 score of ISSA-KELM model reached 0.945 9, 1, 0.866 7 and 0.929, respectively, which are superior to SSA-KELM, PSO-KELM and PSO-SVM models, and the predicted results of the model are the closest to the actual values. It shows that the established ISSA-KELM model has strong generalization ability.

Key words: slope stability, prediction model, improved sparrow search algorithm (ISSA), kernel extreme learning machine (KELM), prediction index, confusion matrix

中图分类号: