[1] |
赵二峰, 顾冲时. 混凝土坝长效服役性态健康诊断研究述评[J]. 水力发电学报, 2021, 40(5): 22-34.
|
|
ZHAO Erfeng, GU Chongshi. Review on health diagnosis of long-term service behaviors for concrete dams[J]. Journal of Hydroelectric Engineering, 2021, 40(5): 22-34.
|
[2] |
黄跃文, 牛广利, 李端有, 等. 大坝安全监测智能感知与智慧管理技术研究及应用[J]. 长江科学院院报, 2021, 38(10): 180-185, 198.
doi: 10.11988/ckyyb.20210589
|
|
HUANG Yuewen, NIU Guangli, LI Duanyou, et al. Research and application of intelligent perception and intelligent management technology for dam safety monitoring[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(10): 180-185, 198.
doi: 10.11988/ckyyb.20210589
|
[3] |
王建, 伍元, 郑东健. 基于多传感器信息融合的大坝监测数据分析[J]. 武汉大学学报:工学版, 2004, 37(1):32-35.
|
|
WANG Jian, WU Yuan, ZHENG Dongjian. Analysis of dam safety monitoring data based on multi sensor data fusion theory[J]. Engineering Journal of Wuhan University, 2004, 37(1):32-35.
|
[4] |
赵海霞, 周少娜, 肖化. 四种判别粗大误差准则的比较与讨论[J]. 大学物理实验, 2017, 30(5): 105-108.
|
|
ZHAO Haixia, ZHOU Shaona, XIAO Hua. The comparison and discussion of four criterions of gross-error detection[J]. College Physics Experiment, 2017, 30(5): 105-108.
|
[5] |
尚书宏, 曹亮, 鲁伟. 基于小波变换特征提取的脱介筛故障诊断算法[J]. 中国安全科学学报, 2023, 33(增2): 233-237.
|
|
SHANG Shuhong, CAO Liang, LU Wei. Fault diagnosis algorithm for medium draining screen based on wavelet transform feature extraction[J]. China Safety Science Journal, 2023, 33(S2): 233-237.
doi: 10.16265/j.cnki.issn1003-3033.2023.S2.0020
|
[6] |
杨兴富, 刘得潭, 杨进, 等. 基于EMD-ABOD的大坝异常监测数据识别方法研究[J]. 水电能源科学, 2024, 42(6): 162-165.
|
|
YANG Xingfu, LIU Detan, YANG Jin, et al. Research on identification method of abnormal monitoring data of dams based on EMD-ABOD[J]. Water Resources and Power, 2024, 42(6): 162-165.
|
[7] |
赵丽军, 邢作霞, 刘洋, 等. 基于数据分析的风电机组偏航机构异常感知方法研究[J]. 太阳能学报, 2022, 43(1):108-115.
|
|
ZHAO Lijun, XING Zuoxia, LIU Yang, et al. Research on anomaly sensing method of yaw mechanism of wind turbine based on data analysis[J]. Acta Energiae Solaris Sinica, 2022, 43(1): 108-115.
|
[8] |
李元梦, 李登华, 丁勇. 基于DBSCAN的大坝安全监测异常数据检测算法[J]. 水电能源科学, 2024, 42(1): 149-152.
|
|
LI Yuanmeng, LI Denghua, DING Yong. Anomaly data detection algorithm for dam safety monitoring based on DBSCAN[J]. Water Resources and Power, 2024, 42(1): 149-152.
|
[9] |
李川洲. 基于关联规则和机器学习的大坝监测异常数据自适应识别方法研究[D]. 重庆: 重庆交通大学, 2023.
|
|
LI Chuanzhou. Research on adaptive identification method for abnormal data of dam monitoring based on association rules and machine learning[D]. Chongqing: Chongqing Jiaotong University, 2023.
|
[10] |
赵丹, 沈志远, 刘晓青. 基于OCISVM的矿井通风系统在线故障诊断[J]. 中国安全科学学报, 2022, 32(10): 76-82.
doi: 10.16265/j.cnki.issn1003-3033.2022.10.1766
|
|
ZHAO Dan, SHEN Zhiyuan, LIU Xiaoqing. Online fault diagnosis of mine ventilation system based on OCISVM[J]. China Safety Science Journal, 2022, 32(10): 76-82.
doi: 10.16265/j.cnki.issn1003-3033.2022.10.1766
|
[11] |
熊敏, 江德军, 高志良, 等. 大坝监测数据多维度LSTM异常检测与恢复[J]. 电子测量技术, 2023, 46(6): 51-56.
|
|
XIONG Min, JIANG Dejun, GAO Zhiliang, et al. Dam monitoring data multi-dimensional LSTM anomaly detection and recovery[J]. Electronic Measurement Technology, 2023, 46(6): 51-56.
|
[12] |
张志昂, 廖光忠. 改进变分自编码器的工业时序数据异常检测[J]. 计算机工程与设计, 2024, 45(1): 17-23.
|
|
ZHANG Zhi'ang, LIAO Guangzhong. Anomaly detection of industrial time series data based on variational autoencoder[J]. Computer Engineering and Design, 2024, 45(1): 17-23.
|
[13] |
陆旦宏, 范文尧, 杨婷, 等. 基于生成对抗Transformer的电力负荷数据异常检测[J]. 电力工程技术, 2024, 43(1): 157-164.
|
|
LU Danhong, FAN Wenyao, YANG Ting, et al. Anomaly detection of power load data based on Transformer and generative adversarial networks[J]. Electric Power Engineering Technology, 2024, 43(1): 157-164.
|
[14] |
刘明群, 何鑫, 覃日升, 等. 基于改进K-means聚类k值选择算法的配网电压数据异常检测[J]. 电力科学与技术学报, 2022, 37(6): 91-99.
|
|
LIU Mingqun, HE Xin, QIN Risheng, et al. Anomaly detection of distribution network voltage data based on improved K-means clustering k-value selection algorithm[J]. Journal of Electric Power Science and Technology, 2022, 37(6): 91-99.
|
[15] |
孙政杰, 丁勇, 李登华. 基于Prophet-GMM的大坝监测数据异常检测算法[J]. 人民黄河, 2024, 46(3): 132-135,142.
|
|
SUN Zhengjie, DING Yong, LI Denghua. Anomaly detection algorithm of dam monitoring data based on Prophet-GMM[J]. Yellow River, 2024, 46(3): 132-135,142.
|
[16] |
朱江行, 邹晓松, 熊炜, 等. 基于Prophet与XGBoost混合模型的短期负荷预测[J]. 现代电力, 2021, 38(3):325-331.
|
|
ZHU Jianghang, ZOU Xiaosong, XIONG Wei, et al. Short-term power load forecasting based on Prophet and XGBoost mixed model[J]. Modern Electric Power, 2021, 38(3):325-331.
|
[17] |
张超, 张少飞. 基于SCADA温度数据的风电机组发电机驱动端轴承异常识别方法[J]. 轴承, 2022(6):67-73.
|
|
ZHANG Chao, ZHANG Shaofei. Anomaly recognition method for drive end bearings of wind turbine generator based on SCADA temperature data[J]. Bearing, 2022 (6): 67-73.
|
[18] |
陈永展, 曲建岭, 王小飞, 等. 时序记忆增强的CNN-LSTM滚动轴承故障诊断方法[J]. 噪声与振动控制, 2025, 45(1):105-111.
|
|
CHEN Yongzhan, QU Jianling, WANG Xiaofei, et al. Rolling bearing fault diagnosis based on CNN-LSTM withtime sequential memory enhancement[J]. Noise and Vibration Control, 2025, 45(1): 105-111.
|
[19] |
郝泽嘉, 施玉群, 成博超, 等. 基于PSO-LSTM的大坝变形组合预测模型[J]. 长江科学院院报, 2025, 42(5):208-214,222.
doi: 10.11988/ckyyb.20240409
|
|
HAO Zejia, SHI Yuqun, CHENG Bochao, et al. A combined PSO-LSTM prediction model for dam deformation[J]. Journal of Changjiang River Scientific Research Institute, 2025, 42(5):208-214,222.
|
[20] |
李松轩, 丁勇, 李登华. 基于影响因子分解法的大坝监测数据异常检测算法[J]. 人民长江, 2023, 54(4):234-240.
|
|
LI Songxuan, DING Yong, LI Denghua. Detection method for dam abnormal monitoring data based on influcing factor decomposition[J]. Yangtze River, 2023, 54(4): 234-240.
|