中国安全科学学报 ›› 2023, Vol. 33 ›› Issue (4): 187-193.doi: 10.16265/j.cnki.issn1003-3033.2023.04.0936

• 防灾减灾技术与工程 • 上一篇    下一篇

城市群综合承灾能力评价的RAGA-PP模型

夏陈红(), 翟国方   

  1. 南京大学 建筑与城市规划学院,江苏 南京 210093
  • 收稿日期:2022-11-13 修回日期:2023-02-03 出版日期:2023-04-28
  • 作者简介:

    夏陈红 (1992—),女,安徽安庆人,博士研究生,主要研究方向为安全与防灾规划。E-mail:

    翟国方 教授

RAGA-PP model for comprehensive disaster-bearing capacity evaluation of urban agglomerations

XIA Chenhong(), ZHAI Guofang   

  1. School of Architecture and Urban Planning, Nanjing University, Nanjing Jiangsu 210093, China
  • Received:2022-11-13 Revised:2023-02-03 Published:2023-04-28

摘要:

为解决已有模型普遍存在的难以动态评价非线性寻优的现实问题,引入投影寻踪(PP)模型进行城市群综合承灾能力评价,并运用基于实数编码的加速遗传算法(RAGA)优化辅助多维数据空间拓扑结构的投影方向,对长三角城市群(YRDUA)地区进行实证研究。结果表明:RAGA-PP模型与典型的熵权法(EWM)、灰色关联分析法(GRA)评价结果具有高度一致性,且RAGA-PP评价结果更符合实际,表明RAGA-PP模型具有较强的精确性、稳健性和抗干扰性,不仅能够聚焦于优秀个体的取值区间来实现全局搜索和加速评估,也在较大程度上避免传统方法长期存在的权重设置主观性较强、高维数据不易处理的现实问题;另外,各子系统维度的目标投影值平均水平排序为:抗灾维度>防灾维度>救灾维度>恢复维度,表明抗灾维度指标对综合承灾力影响程度最大。

关键词: 综合承灾能力, 基于实数编码的加速遗传算法(RAGA), 投影寻踪(PP)模型, 投影方向, 长三角城市群(YRDUA)

Abstract:

In order to solve the practical problem that it was difficult to dynamically evaluate the nonlinear optimization of the existing models, the PP model was introduced to evaluate the comprehensive disaster-bearing capacity of YRDUA, and the real coding-based RAGA was used to optimize the projection direction of the auxiliary multidimensional data spatial topology. The results show that the RAGA-PP model is highly consistent with the typical entropy weight method (EWM) and grey relational analysis (GRA) evaluation results, and the evaluation results of RAGA-PP are more in line with the actual situation, indicating that the RAGA-PP model has substantial accuracy, robustness, and anti-interference. It can not only focus on the value interval of excellent individuals to achieve global search and accelerated evaluation, but also to a large extent avoid the high-dimensional data that are difficult to deal with in traditional methods. In addition, the average level of the target projection values of each subsystem dimension is ranked as follows: disaster resistance dimension > disaster prevention dimension > disaster relief dimension > recovery dimension, indicating that the disaster resistance dimension index has the most significant influence on the comprehensive disaster bearing capacity.

Key words: comprehensive disaster bearing capacity, real coding based accelerating genetic algorithm(RAGA), projection pursuit(PP), projection direction, Yangtze River Delta urban agglomeration(YRDUA)