[1] |
巩亚文, 刘应春, 景明举, 等. 二氧化硅凝胶泡沫材料制备及阻燃性能研究[J]. 中国安全科学学报, 2022, 32(5):127-133.
doi: 10.16265/j.cnki.issn1003-3033.2022.05.0114
|
|
GONG Yawen, LIU Yingchun, JING Mingju, et al. Preparation and flame retardant properties of silica gel foam[J]. China Safety Science Journal, 2022, 32(5):127-133.
doi: 10.16265/j.cnki.issn1003-3033.2022.05.0114
|
[2] |
李孜军, 陈天丰, 李明, 等. 化学泡沫阻化剂对硫化矿石自燃阻化效果研究[J]. 中国安全科学学报, 2017, 27(10):44-49.
doi: 10.16265/j.cnki.issn1003-3033.2017.10.008
|
|
LI Zijun, CHEN Tianfeng, LI Ming, et al. Study on sulfide ore spontaneous combustion inhibition effect of chemical foam inhibitor[J]. China Safety Science Journal, 2017, 27(10):44-49.
doi: 10.16265/j.cnki.issn1003-3033.2017.10.008
|
[3] |
邓天刁, 刘长春, 黄林远, 等. 正压式泡沫灭火技术的研究进展[J]. 中国安全科学学报, 2019, 29(10):64-70.
doi: 10.16265/j.cnki.issn1003-3033.2019.10.010
|
|
DENG Tiandiao, LIU Changchun, HUANG Linyuan, et al. Research progress of positive pressure foam extinguishing technology[J]. China Safety Science Journal, 2019, 29(10):64-70.
doi: 10.16265/j.cnki.issn1003-3033.2019.10.010
|
[4] |
史全林, 杨红旗, 李洪彪. 成膜型胶体泡沫的制备及灭火降温特性研究[J]. 中国安全科学学报, 2022, 32(10):121-126.
doi: 10.16265/j.cnki.issn1003-3033.2022.10.2201
|
|
SHI Quanlin, YANG Hongqi, LI Hongbiao. Research on preparation of film-forming colloidal foam and its fire extinguishing and cooling characteristics[J]. China Safety Science Journal, 2022, 32(10):121-126.
doi: 10.16265/j.cnki.issn1003-3033.2022.10.2201
|
[5] |
SCHAEFER C E, ANDAYA C, URTIAGA A, et al. Electrochemical treatment of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in groundwater impacted by aqueous film forming foams (AFFFs)[J]. Journal of Hazardous Materials, 2015, 295:170-175.
doi: 10.1016/j.jhazmat.2015.04.024
pmid: 25909497
|
[6] |
RODRIGUEZ-FREIRE L, ABAD-FERNÁNDEZ N, SIERRA-ALVAREZ R, et al. Sonochemical degradation of perfluorinated chemicals in aqueous film-forming foams[J]. Journal of Hazardous Materials, 2016, 317: 275-283.
|
[7] |
姜宁. 基于短链碳氟-碳氢复配体系的耐海水型水成膜泡沫灭火剂研究[D]. 合肥: 中国科学技术大学, 2021.
|
|
JIANG Ning. Investigation on seawater-resistant aqueous film-forming foam based on short-chain fluorocarbon and hydrocarbon surfactants[D]. Hefei: University of Science and Technology of China, 2021.
|
[8] |
SHENG Youjie, YAN Canbin, LI Yang, et al. Thermal stability of gel foams co-stabilized by nano-aluminum hydroxide and surfactants[J]. Journal of Sol-Gel Science and Technology, 2023, 105(1):127-138.
|
[9] |
JIANG Ning, SHENG Youjie, LI Changhai, et al. Surface activity, foam properties and aggregation behavior of mixtures of short-chain fluorocarbon and hydrocarbon surfactants[J]. Journal of Molecular Liquids, 2018, 268:249-255.
|
[10] |
SHENG Youjie, PENG Yunchuan, YAN Canbin, et al. Influence of nanoparticles on rheological properties and foam properties of mixed solutions of fluorocarbon and hydrocarbon surfactants[J]. Powder Technology, 2022, 398:DOI: 10.1016/J.POWTEC.2021.117067
|
[11] |
SHENG Youjie, ZHANG Hanling, GUO Ying, et al. Stability and rheological properties of foams co-stabilized by hydrophilic silica nanoparticles and amino acid/alkyl glycoside surfactants[J]. Journal of Molecular Liquids, 2023, 382:DOI: 10.1016/j.molliq.2023.122009.
|
[12] |
HINNANT K M, ANANTH R, FARLEY J P, et al. Extinction performance summary of commercial fluorine-free firefighting foams over a 28ft2 pool fire detailed by MIL-PRF-243385[R]. Naval Research Laboratory, Washington DC, 2020.
|
[13] |
PETERSON H B, JABLONSKI E J, NEILL R R, et al. Full-Scale fire modeling test studies of light water and protein type foams[R]. Naval Research Naval Research Laboratory, 1967.
|
[14] |
ANANTH R, SNOW A W, HINNANT K M, et al. Synergisms between siloxane-polyoxyethylene and alkyl polyglycoside surfactants in foam stability and pool fire extinction[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 579: DOI: 10.1016/J.COLSURFA.2019.123686.
|
[15] |
YU Xiaoyang, JIANG Ning, MIAO Xuyang, et al. Comparative studies on foam stability, oil-film interaction and fire extinguishing performance for fluorine-free and fluorinated foams[J]. Process Safety and Environmental Protection, 2020, 133:201-215.
|
[16] |
SCHRAMM L L, TURTA A T, NOVOSAD J J. Microvisual and coreflood studies of foam interactions with a light crude oil[J]. SPE Reservoir Engineering, 1993, 8(3):201-206.
|
[17] |
PRINCEN H M, GODDARD E D. The effect of mineral oil on the surface properties of binary surfactant systems[J]. Journal of Colloid and Interface Science, 1972, 38(2):523-534.
|
[18] |
张佳庆, 尚峰举, 何旭, 等. 变压器油沸溢池火温度特征及传热模型试验研究[J]. 中国安全科学学报, 2021, 31(11): 106-113.
doi: 10.16265/j.cnki.issn 1003-3033.2021.11.015
|
|
ZHANG Jiaqing, SHANG Fengju, HE Xu, et al. Study on temperature characteristics and heat transfer model of boilover in transformer oil pool fires[J]. China Safety Science Journal, 2021, 31(11): 106-113.
doi: 10.16265/j.cnki.issn 1003-3033.2021.11.015
|
[19] |
闵永林, 苏琳, 张杰, 等. 通风条件下用多组分细水雾扑灭变压器火灾的模拟研究[J]. 中国安全科学学报, 2014, 24(8):43-48.
|
|
MIN Yonglin, SU Lin, ZHANG Jie, et al. Simulation of extinguishing oil-immersed transformer fire by polycomponent water mist[J]. China Safety Science Journal, 2014, 24(8):43-48.
|
[20] |
CHEN Wei, HU Sheng, TANG Lisong, et al. Research review on transformer fire protection technology[J]. IOP Conference Series Earth and Environmental Science, 2019, 310(2):DOI: 10.1088/1755-1315/310/2/022022.
|
[21] |
SUN Ruibang, YANG Xing, WANG Juncai, et al. Experimental study on axial temperature profile of jet fire of oil-filled equipment in substation[J]. Processes, 2021, 9(8):DOI: 10.3390/PR9081460.
|
[22] |
WU Juan, MEI Ping, CHEN Wu, et al. Surface properties and solubility enhancement of anionic/nonionic surfactant mixtures based on sulfonate gemini surfactants[J]. Journal of Surfactants and Detergents, 2019, 22(6):1331-1342.
doi: 10.1002/jsde.12335
|
[23] |
SHENG Youjie, Wu Xiujuan, LU Shouxiang et al. Experimental study on foam properties of mixed systems of silicone and hydrocarbon surfactants[J]. Journal of Surfactants & Detergents, 2016, 19:823-831.
|
[24] |
王军超, 李国胜, 邓丽君, 等. 阳离子型表面活性剂CTAB的泡沫性能研究[J]. 煤炭工程, 2018, 50(1):113-116.
|
|
WANG Junchao, LI Guosheng, DENG Lijun, et al. Study on foaming properties of CTAB cationic surfactant[J]. Coal Engineering, 2018, 50(1):113-116.
|
[25] |
SHENG Youjie, MA Wenzhi, YU Xiaoyang, et al. Effect of liquid fuel on foamability and foam stability of mixtures of fluorocarbon and hydrocarbon surfactants[J]. Journal of Molecular Liquids, 2023, 388:DOI: 10.1016/j.molliq.2023.122762.
|
[26] |
SETT S, SAHU R P, SINHA-RAY S, et al. Superspreaders versus "cousin" non-superspreaders: disjoining pressure in gravitational film drainage[J]. Langmuir, 2014, 30(10): 2619-2631.
doi: 10.1021/la404754d
pmid: 24564488
|
[27] |
王琦, 习海玲, 左言军. 泡沫性能评价方法及稳定性影响因素综述[J]. 化学工业与工程技术, 2007(2):25-30.
|
|
WANG Qi, XI Hailing, ZUO Yanjun. Review on measurement techniques of performance and influence factors of stability for foam[J]. Energy Chemical Industry, 2007(2):25-30.
|
[28] |
KIGER K T, DUNCAN J H. Air-entrainment mechanisms in plunging jets and breaking waves[J]. Annual Review of Fluid Mechanics, 2012, 44:563-596.
|
[29] |
端祥刚, 侯吉瑞, 李实, 等. 耐油起泡剂的研究现状与发展趋势[J]. 石油化工, 2013, 42(8):935-940.
|
|
DUAN Xianggang, HOU Jirui, LI Shi, et al. Progresses and future trends in research of oil resistant foaming agent[J]. Petrochemical Technology, 2013, 42(8):935-940.
|
[30] |
FARAJZADEH R, ANDRIANOV A, KRASTEV R, et al. Foam-oil interaction in porous media: implications for foam assisted enhanced oil recovery[J]. Advances in Colloid and Interface Science, 2012, 183/184:1-13.
|
[31] |
崔乐雨, 李应成, 何秀娟, 等. 微乳液泡沫驱油技术原理、挑战和研究进展[J]. 精细化工, 2022, 39(1):56-64.
|
|
CUI Leyu, LI Yingcheng, HE Xiujuan, et al. Mechanism, challenge and research advance in microemulsion-foam EOR[J]. Fine Chemicals, 2022, 39(1):56-64.
|
[32] |
王增林, 王其伟. 强化泡沫驱油体系性能研究[J]. 石油大学学报:自然科学版, 2004, 28(3): 49-51,55.
|
|
WANG Zenglin, WANG Qiwei. Study on performance of enhanced foam flooding system[J]. Journal of China University of Petroleum:Edition of Natural Science, 2024, 28(3):49-51,55.
|
[33] |
曹玉朋, 杨伟光, 姜亚洁, 等. 分子结构对阳离子双子表面活性剂性能的影响[J]. 应用化工, 2021, 50(11):2979-2984.
|
|
CAO Yupeng, YANG Weiguang, JIANG Yajie, et al. Effect of molecular structure on the performance of cationic gemini surfactants[J]. China Safety Science Journal, 2021, 50(11):2979-2984.
|
[34] |
WALTERMO Å, CLAESSON P M, SIMONSSON S, et al. Foam and thin-liquid-film studies of alkyl glucoside systems[J]. Langmuir, 1996, 12(22):5271-5278.
|
[35] |
STEIN H N. On marginal regeneration[J]. Advances in Colloid and Interface Science, 1991, 34:175-190.
|
[36] |
NIERSTRASZ V A, FRENS G. Marginal regeneration in thin vertical liquid films[J]. Journal of Colloid and Interface Science, 1998, 207(2):209-217.
pmid: 9792764
|
[37] |
NIKOLOV A D, WASAN D T. Dispersion stability due to structural contributions to the particle interaction as probed by thin liquid film dynamics[J]. Langmuir, 1992, 8(12):2985-2994.
|
[38] |
BASHIR A, HADDAD A S, RAFATI R. Nanoparticle/polymer-enhanced alpha olefin sulfonate solution for foam generation in the presence of oil phase at high temperature conditions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 582:DOI: 10.1016/j.colsurfa.2019.123875.
|