中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (10): 115-123.doi: 10.16265/j.cnki.issn1003-3033.2025.10.1430

• 安全工程技术 • 上一篇    下一篇

GMM聚类与高密度电阻法的道路塌陷隐患探测研究

张艳辉(), 张雨燕, 胡宇佳, 罗志彬, 赵维刚**()   

  1. 石家庄铁道大学 安全工程与应急管理学院,河北 石家庄 050043
  • 收稿日期:2025-05-11 修回日期:2025-07-01 出版日期:2025-11-10
  • 通信作者:
    **赵维刚(1973—),男,河北石家庄人,博士,教授,主要从事交通基础设施损伤检测、智慧运维方面的研究。E-mail:
  • 作者简介:

    张艳辉 (1991—),男,河北邯郸人,博士,副教授,主要从事电磁法正反演技术、地下病害检测等方面的研究。E-mail:

  • 基金资助:
    国家自然科学基金青年科学基金资助(42104079); 国能朔黄铁路发展有限责任公司技术开发项目(GJNY-20-230); 河北省自然科学基金面上项目资助(D2025210007); 石家庄铁道大学研究生创新资助项目(YC202458)

Research on detection of subgradecollapse hazards based on GMM clustering and high-density resistivity method

ZHANG Yanhui(), ZHANG Yuyan, HU Yujia, LUO Zhibin, ZHAO Weigang**()   

  1. School of Safety Engineering and Emergency Management, Shijiazhuang Tiedao University, Shijiazhuang Hebei 050043, China
  • Received:2025-05-11 Revised:2025-07-01 Published:2025-11-10

摘要: 为解决道路塌陷隐患探测中高密度电阻法分辨率不足和异常识别精度有限的问题,开展基于高密度电阻法的道路塌陷隐患探测分辨率测试和基于高斯混合模型(GMM)聚类的异常识别方法研究。文中正演采用有限差分法,反演采用高斯-牛顿法,通过数值模拟测试不同电极间距的配置对探测分辨率的影响;结合管网漏损诱发道路塌陷的背景,设计地下病害在不同发展阶段的地电模型,采用GMM聚类分析方法优化高密度电阻法的反演结果。结果表明:调整电极间距和测量参数能显著提高探测分辨率,在4.5 m深度下,缩小电极间距能够有效刻画1 m尺度的地下病害体的位置和形态,且0.5 m电极间距能够兼顾探测精度与计算效率,即探测目标异常体尺度的1/2左右。对于同样埋深的异常体,低阻病害的电阻率值恢复效果优于高阻病害,为不同病害目标探测提供参数优化依据。通过管网漏损诱发的地下空洞模型测试,揭示了高密度电阻法在探测不同阶段漏水病害的可行性,而基于GMM的聚类分析进一步提高了异常区域的识别精度。

关键词: 高斯混合模型(GMM)聚类, 高密度电阻法, 道路塌陷, 隐患探测, 分辨率

Abstract:

To address the issues of insufficient resolution in the high-density electrical resistivity method and limited accuracy in anomaly indentification for road collapse hazard detection, resolution tests for road collapse hazard detection based on high-density electrical resistivity method and investigation of an anomaly identification method using GMM clustering were conducted. Forward modeling was performed using the finite difference method, while inversion process was carried out using the Gauss-Newton method. Numerical simulations were conducted to assess the effect of different electrode spacing configurations on detection resolution. In the context of pipeline leakage-induced road collapse, geoelectric models for underground anomalies at various stages of development were designed, and GMM clustering analysis was applied to optimize the inversion results of the high-density electrical resistivity method. The results demonstrate that adjusting the electrode spacing and measurement parameters can significantly improve detection resolution. At a depth of 4.5 meters, the location and shape of underground anomalies at a scale of 1 meter can be effectively characterized by reducing the electrode spacing. An electrode spacing of 0.5 meters can balance detection accuracy and computational efficiency, corresponding to half the scale of the target anomaly. For anomalies buried at the same depth, the resistivity recovery of low-resistance anomalies is superior to that of high-resistance anomalies, providing the basis for parameter optimization for detecting various anomaly types. The feasibility of high-density electrical resistivity method to detect leakage-induced detects at different stages is demonstrated through tests on underground cavity models induced by pipeline leakage, while the identification accuracy of anomaly regions is further enhanced by the GMM-based clustering analysis.

Key words: Gaussian mixture model(GMM)clustering, high-density resistivity method, road collapse, hazards detection, resolution

中图分类号: