中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (S1): 234-238.doi: 10.16265/j.cnki.issn1003-3033.2025.S1.0035

• 研究论文 • 上一篇    下一篇

基于数据增强的道路塌陷风险评估方法

王一兆1(), 柏文锋1, 何青伦2,3, 王飞2,3,**(), 陈龙2,3, 贺森3   

  1. 1 广州地铁设计研究院股份有限公司, 广东 广州 510091
    2 清华大学 安全科学学院, 北京 100084
    3 清华大学 深圳国际研究生院安全科学与技术研究所, 广东 深圳 518000
  • 收稿日期:2025-02-15 修回日期:2025-04-28 出版日期:2025-09-03
  • 通信作者:
    ** 王飞( 1979—),男,河南周口人,博士,副教授,主要从事灾害建模、深度学习等方面的研究。E-mail:
  • 作者简介:

    王一兆 (1986—),男,广西博白人,博士,高级工程师,主要从事岩土工程风险防控与地下工程灾变方面的工作。E-mail:

    柏文锋, 正高级工程师

  • 基金资助:
    项目基金:广东省城市轨道交通工程建造新技术企业重点实验室(2017B030302009); 广州市院士专家工作站(2021创新中心030号)

A methodology for road collapse risk assessment based on data augmentation

WANG Yizhao1(), BAI Wenfeng1, HE Qinglun2,3, WANG Fei2,3,**(), CHEN Long2,3, HE Sen3   

  1. 1 Guangzhou Metro Design & Research Institute Co., Ltd., Guangzhou Guangdong 510091, China
    2 School of Safety Science, Tsinghua University, Beijing 100084, China
    3 Institute of Safety Science and Technology, Tsinghua Shenzhen International Graduate School, Shenzhen Guangdong 518000, China
  • Received:2025-02-15 Revised:2025-04-28 Published:2025-09-03

摘要: 为预防道路塌陷事故发生、减轻事故后果,需科学有效地评估城市道路风险。针对地面塌陷数据集不平衡问题,引入合成少数过采样技术(SMOTE)和生成对抗网络(GAN),以增强原始正样本事故数据,并基于卷积神经网络(CNN)、多层感知机(MLP)等深度学习模型进行训练,训练的模型可用于城市道路的风险识别。选取佛山市2014—2018年塌陷事故数据进行试验。结果表明:数据增强的方法能够使模型对少数类样本识别能力大幅提升(平均召回率提升最高可达20%),并解决不平衡数据训练模型时存在的过拟合问题。

关键词: 数据增强, 道路塌陷, 风险评估, 深度学习, 神经网络

Abstract:

To prevent road collapse accidents and minimize losses, it is essential to conduct scientific and effective risk assessments of urban roads. To address the imbalance in ground collapse datasets, a synthetic minority oversampling technique (SMOTE) and a generative adversarial network (GAN) were integrated to enhance the original positive accident samples. Deep learning models including convolutional neural networks (CNN) and multilayer perceptron (MLP) were employed for training, and the trained models could be used for risk identification of urban roads. Experimental validation was conducted using ground collapse incident data from Foshan City (2014-2018). The results demonstrate that data augmentation can significantly improve the model's ability to recognize minority samples (with an average recall rate increase of up to 20%) and solve the overfitting problem when training models with imbalanced data.

Key words: data augmentation, road collapse, risk assessment, deep learning, neural network

中图分类号: