中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (3): 69-76.doi: 10.16265/j.cnki.issn1003-3033.2025.03.1181

• 安全工程技术 • 上一篇    下一篇

基于改进YOLOv8s模型的隧道火灾检测

王春源(), 刘权捷**()   

  1. 青岛理工大学 机械与汽车工程学院,山东 青岛 266520
  • 收稿日期:2024-10-22 修回日期:2024-12-24 出版日期:2025-03-28
  • 通信作者:
    ** 刘权捷(2000—),男,辽宁抚顺人,硕士研究生,研究方向为智能交通安全及目标检测跟踪算法。E-mail:
  • 作者简介:

    王春源 (1980—),男,山东诸城人,硕士,副教授,主要从事地下工程智能减灾防灾技术和安全管理方面的研究。E-mail:

  • 基金资助:
    国家自然科学基金资助(52474238)

Research on tunnel fire detection based on improved YOLOv8s model

WANG Chunyuan(), LIU Quanjie**()   

  1. School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao Shandong 266520,China
  • Received:2024-10-22 Revised:2024-12-24 Published:2025-03-28

摘要:

为准确高效地检测复杂环境隧道火灾,提出一种基于改进YOLOv8s的隧道火灾检测算法。首先,引入跨阶段部分变换器模块(CSP-PTB)重构主干网络结构,在降低计算复杂度的同时保持特征提取能力;其次,融入卷积注意力(CBAM)增强模型对关键区域的感知能力,提升特征表征的判别性;最后,采用归一化高斯瓦瑟斯坦距离(NWD)损失函数优化训练过程,有效解决小目标检测精度不足的问题。检测试验结果表明:改进后的YOLOv8s模型平均精度均值(mAP)为0.848,比原版YOLOv8s模型提升2%;召回率为0.812,较原模型大幅提升9.3%;同时模型计算量(GFLOPS)减少6.7%,实现性能提升与效率优化的双重目标。与主流目标检测模型比,改进模型的mAP较快速区域卷积神经网络(Faster R-CNN)、单发多框检测(SSD)和YOLOv5s分别提升7.3%、10.1%和4.2%。

关键词: YOLOv8模型, 隧道火灾检测, 卷积神经网络(CNN), 卷积注意力(CBAM), 损失函数

Abstract:

To accurately and efficiently detect fires in complex tunnel environments, an enhanced YOLOv8s-based tunnel fire detection algorithm was proposed. Firstly, the Cross-Stage Partial Transformer Block (CSP-PTB) module was introduced to reconstruct the backbone network structure, thereby reducing computational complexity while preserving feature extraction capabilities. Secondly, CBAM was integrated to enhance the perception of the model of key areas and improve the discriminative power of feature representation. Finally, the Normalized Wasserstein Distance (NWD) loss function was employed to optimize the training process, effectively addressing the issue of insufficient detection accuracy for small targets. Experimental results demonstrate that the improved YOLOv8s model achieves a mean average precision (mAP) of 0.848, representing a 2% improvement over the original YOLOv8s model. The recall rate reachs 0.812, marking a significant increase of 9.3% compared to the original model. Additionally, the computational cost (GFLOPS) of the improved model is reduced by 6.7%, achieving dual objectives of performance enhancement and efficiency optimization. Compared with mainstream object detection models such as Faster R-CNN(Faster Region-based Convolutional Neural Network), SSD(Single Shot MultiBox Detector), and YOLOv5s, the improved model exhibits superior performance, with mAP improvements of 7.3%, 10.1%, and 4.2%, respectively, thus meeting the stringent requirements for tunnel fire detection.

Key words: YOLOv8 model, tunnel fire detection, convolutional neural network(CNN), convolutional block attention module (CBAM), loss function

中图分类号: